期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Easily Compatible Eye-tracking System for Freely-moving Small Animals
1
作者 Kang Huang Qin Yang +4 位作者 Yaning Han Yulin Zhang Zhiyi Wang Liping Wang Pengfei Wei 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第6期661-676,共16页
Measuring eye movement is a fundamental approach in cognitive science as it provides a variety of insightful parameters that reflect brain states such as visual attention and emotions.Combining eye-tracking with multi... Measuring eye movement is a fundamental approach in cognitive science as it provides a variety of insightful parameters that reflect brain states such as visual attention and emotions.Combining eye-tracking with multimodal neural recordings or manipulation techniques is beneficial for understanding the neural substrates of cognitive function.Many commercially-available and custom-built systems have been widely applied to awake,head-fixed small animals.However,the existing eyetracking systems used in freely-moving animals are still limited in terms of their compatibility with other devices and of the algorithm used to detect eye movements.Here,we report a novel system that integrates a general-purpose,easily compatible eye-tracking hardware with a robust eye feature-detection algorithm.With ultra-light hardware and a detachable design,the system allows for more implants to be added to the animal's exposed head and has a precise synchronization module to coordinate with other neural implants.Moreover,we systematically compared the performance of existing commonly-used pupil-detection approaches,and demonstrated that the proposed adaptive pupil feature-detection algorithm allows the analysis of more complex and dynamic eye-tracking data in freemoving animals.Synchronized eye-tracking and electroencephalogram recordings,as well as algorithm validation under five noise conditions,suggested that our system is flexibly adaptable and can be combined with a wide range of neural manipulation and recording technologies. 展开更多
关键词 EYE-TRACKING freely-moving Head-mounted device Pupil detection Adaptive Kalman filter
原文传递
Absolute Internal Energy of the Real Gas 被引量:1
2
作者 Albrecht Elsner 《Engineering(科研)》 2017年第4期361-375,共15页
The internal energy U of the real, neutral-gas particles of total mass M in the volume V can have positive and negative values, whose regions are identified in the state chart of the gas. Depending on the relations am... The internal energy U of the real, neutral-gas particles of total mass M in the volume V can have positive and negative values, whose regions are identified in the state chart of the gas. Depending on the relations among gas temperature T, pressure p and mass-specific volume v=V/M, the mass exists as a uniform gas of freely-moving particles having positive values U or as more or less structured matter with negative values U. In the regions U>0?above the critical point [Tc , pc , vc] it holds that p(T,v)>pc and v>vc, and below the critical point it holds that p(T,v)c and v>vv , where vv is the mass-specific volume of saturated vapor. In the adjacent regions with negative internal energy values Uc is the line of equal positive and negative energy contributions and thus represents a line of vanishing internal energy ?U=0. At this level along the critical isochor the ever present microscopic fluctuations in energy and density become macroscopic fluctuations as the pressure decreases on approaching the critical point;these are to be observed in experiments on the critical opalescence. Crossing the isochor vc from U>0 to UΔU>0 happens without any discontinuity. The saturation line vv also separates the regions between U>0 and U , but does not represent a line U=0. The internal-energy values of saturated vapor Uv and condensate Ui can be determined absolutely as functions of vapor pressure p and densities (M/V)v and (M/V)i , repectively, yielding the results Uiv, U=Ui+Uvc and U=Ui=Uv=0 at the critical point. Crossing the line Vv from U=Uv>0 to U=Uv+UiΔU=-Ui>0 to be removed from the particle system. The thermodynamic and quantum-mechanical formulations of the internal energy of a particle system only agree if both the macroscopic and microscopic energy scales have the same absolute energy reference value 0. Arguments for the energy reference value in the state of transition from bound to freely- moving particles in macroscopic classical and microscopic quantum particle systems are discussed. 展开更多
关键词 ENERGY Reference Value Zero in Microscopic and Macroscopic Particle Systems STATE of Transition from Bound to freely-moving Particles INTERNAL ENERGY Regions in the STATE Chart of Gas CRITICAL Point and CRITICAL Isochor Loci of VANISHING INTERNAL ENERGY CRITICAL OPALESCENCE BEC Calculation of INTERNAL Energies of Saturated Liquid and Vapor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部