期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage 被引量:4
1
作者 Xiaosa Xu Yuqian Qiu +7 位作者 Jianping Wu Baichuan Ding Qianhui Liu Guangshen Jiang Qiongqiong Lu Jiangan Wang Fei Xu Hongqiang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期416-422,共7页
Onedimensional porous carbons bearing high surface areas and sufficient heteroatom doped functionalities are essential for advanced electrochemical energy storage devices,especially for developing freestanding film el... Onedimensional porous carbons bearing high surface areas and sufficient heteroatom doped functionalities are essential for advanced electrochemical energy storage devices,especially for developing freestanding film electrodes.Here we develop a porous,nitrogenenriched,freestanding hollow carbon nanofiber(PNFHCF)electrode material via filtration of polypyrrole(PPy)hollow nanofibers formed by in situ selfdegraded templateassisted strategy,followed by NH3assisted carbonization.The PNFHCF retains the freestanding film morphology that is composed of threedimensional networks from the entanglement of 1D nanofiber and delivers 3.7fold increase in specific surface area(592 m^(2)g^(-1))compared to the carbon without NH_(3)treatment(FHCF).In spite of the enhanced specific surface area,PNFHCF still exhibits comparable high content of surface N functionalities(8.8%,atom fraction)to FHCF.Such developed hierarchical porous structure without sacrificing N doping functionalities together enables the achievement of high capacity,highrate property and good cycling stability when applied as selfsupporting anode in lithiumion batteries,superior to those of FHCF without NH3 treatment. 展开更多
关键词 Energy ELECTROCHEMISTRY NANOMATERIALS Hollow carbon nanofibers freestanding electrode Lithium-ion batteries
下载PDF
Freestanding MoSe_(2)nanoflowers for superior Li/Na storage properties
2
作者 Qiao Cu Chao-Qun Shang +1 位作者 Guo-Fu Zhou Xin Wang 《Tungsten》 EI CSCD 2024年第1期238-247,共10页
MoSe_(2),with high theoretical specific capacity,has attracted a lot of attention.There remains an open challenge to effectively suppress the irreversible selenium dissolution and rapid capacity decrease induced by se... MoSe_(2),with high theoretical specific capacity,has attracted a lot of attention.There remains an open challenge to effectively suppress the irreversible selenium dissolution and rapid capacity decrease induced by severe volume change during cycling.Herein,we synthesize MoSe_(2)nanoflowers dispersed on one-dimensional(1D)N-doped carbon nanofibers(MoSe_(2)@NCNFs)for use as a freestanding electrode.In this unique structure,the 1D N-doped carbon nanofibers are found to not only enhance the conductivity but also ensure the structural integrity during the Li^(+)/Na^(+)insertion/destraction processes.As expected,at 2 A·g^(-1),the specific capacity of the MoSe_(2)@NCNFs is maintained at 180 mAh·g^(-1)after 500 cycles when used in lithium storage applications.Furthermore,in the case of sodium storage,at 1 A·g^(-1),the MoSe_(2)@NCNFs shows a capacity of 122mAh·g^(-1)after 500 cycles.These findings suggest that the MoSe_(2)@NCNF electrodes may be a promising candidate for use in reversible Li/Na storage applications. 展开更多
关键词 Li/Na storage freestanding electrode MoSe_(2) Electrochemical reaction kinetics Structural integrity
原文传递
High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance 被引量:2
3
作者 Hao Xu Yufang Cao +4 位作者 Yong Li Pei Cao Dandan Liu Yongyi Zhang Qing wen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期240-247,共8页
Developing high power and energy supercapacitors(SCs)is a long-pursued goal for the application in transportation and energy storage station.Herein,a rationally-designed Co-doped nickel oxide nanosheets@carbon-welded ... Developing high power and energy supercapacitors(SCs)is a long-pursued goal for the application in transportation and energy storage station.Herein,a rationally-designed Co-doped nickel oxide nanosheets@carbon-welded carbon nanotube foam(Co-doped NiO@WCNTF)as freestanding electrode is successfully prepared for high power and energy SCs.The WCNTF framework with high specific surface area provides three dimensional highly conductive network for fast charge transport and ensures high loading of active materials(9.2 mg/cm2).Moreover,porous Co-doped NiO nanosheets uniformly anchored on the WCNTF framework enable rapid charge kinetics due to the high intrinsic conductivity of Co-doped Ni O nanosheets and their good contact with conductive WCNTF substrate.As a result,the unique integrated electrode with 3D architecture exhibits an ultrahigh specific capacitance of 11.45 F/cm2 at 5 mA/cm2,outstanding rate capability(11.45 F/cm2 at 5 mA/cm2 and a capacitance retention of 86.2%at 30 mA/cm2)and good cycling stability,suggesting great potential for high performance supercapacitor. 展开更多
关键词 Carbon nanotube foam Pseudocapacitors Co-doped NiO nanosheets freestanding electrode
下载PDF
Sb nanoparticles encapsulated in N-doped carbon nanotubes as freestanding anodes for high-performance lithium and potassium ion batteries
4
作者 Xiao-Ping Lin Fang-Fang Xue +1 位作者 Zhi-Gang Zhang Qiu-Hong Li 《Rare Metals》 SCIE EI CAS CSCD 2023年第2期449-458,共10页
Sb-based materials with high specific capacity have targeted as an alternative anode material for alkali metal ion batteries.Herein,Sb nanoparticles embedded in hollow porous N-doped carbon nanotubes(Sb@N-C nanotubes)... Sb-based materials with high specific capacity have targeted as an alternative anode material for alkali metal ion batteries.Herein,Sb nanoparticles embedded in hollow porous N-doped carbon nanotubes(Sb@N-C nanotubes)are used as freestanding anode for Li-ion batteries(LIBs)and K-ion batteries(PIBs).The Sb@N-C nanotubes demonstrate exceptional reversible capacity of643 mAh·g^(-1)at 0.1 A·g^(-1)with long cycle stability,as well as outstanding rate performance(219.6 mAh·g^(-1)at10 A·g^(-1))in LIBs.As the anode material of PIBs,they reveal impressive capacity of 325.4 mAh·g^(-1)at 0.1 A·g^(-1).The superior electrochemical properties mainly originate from the novel structure.To be specific,the obtained 3D connected network allows for quick ion and electron migration,and prevents the aggregation of Sb nanoparticles.The hollow porous nanotubes can not only accommodate the volume expansion of Sb nanoparticles during cycling,but also facilitate the infiltration of the electrolyte and reduce the ion diffusion length.This work provides a new insight for designing advanced Sb-based anodes for alkali metal ion batteries. 展开更多
关键词 Alkali metal ion batteries freestanding electrode Hollow porous nanotube Sb@N-C nanotubes
原文传递
Porous carbon framework nested nickel foam as freestanding host for high energy lithium sulfur batteries 被引量:4
5
作者 Yan Song Xiuyuan Li Chaozheng He 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第3期1106-1110,共5页
Constructing 3 D multifunctional conductive framework as stable sulfur cathode contributes to develop advanced lithium-sulfur(Li-S)batteries.Herein,a freestanding electrode with nickel foam framework and nitrogen dope... Constructing 3 D multifunctional conductive framework as stable sulfur cathode contributes to develop advanced lithium-sulfur(Li-S)batteries.Herein,a freestanding electrode with nickel foam framework and nitrogen doped porous carbon(PC)network is presented to encapsulate active sulfur for Li-S batteries.In such a mutually embedded architecture with high stability,the interconnected carbon network and nickel foam matrix can expedite ionic/electro nic tra nsport and sustain volume variations of sulfur.Furthermore,rationally designed porous structures provide sufficient internal space and large surface area for high active sulfur loading and polar polysulfides anchoring.Benefiting from the synergistic superiority,the Ni/PC-S cathode exhibits a high initial capacity of around 1200 mAh/g at 0.2 C,excelle nt rate perfo rmance,and high cycling stability with a low decay rate of 0.059%per cycle after 500 cycles.This work provides a useful strategy to exploit freestanding porous framework for diverse applications. 展开更多
关键词 Porous carbon Nitrogen doping Polysulfides anchoring freestanding electrode Lithium-sulfur batteries
原文传递
One-step synthesis of hierarchical Ni_(3)Se_(2)nanosheet-on-nanorods/Ni foam electrodes for hybrid supercapacitors
6
作者 Fangshuai Chen Yanan Chen +1 位作者 Qing Han Liangti Qu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第1期475-479,共5页
Transitional metal selenides have high conductivity,even metal quality,which makes them great for using as electrode materials for fabricating supercapacitors.Here,hierarchical Ni_(3)Se_(2)nanosheet-on-nanorods on Ni ... Transitional metal selenides have high conductivity,even metal quality,which makes them great for using as electrode materials for fabricating supercapacitors.Here,hierarchical Ni_(3)Se_(2)nanosheet-on-nanorods on Ni foam(NSR-Ni_(3)Se_(2)/Ni)was fabricated by a facile three-dimensional(3D)substrate-assisted confinement assembly method,and used as a freestanding electrode material for hybrid supercapacitors(HSCs).In this design,metallic Ni_(3)Se_(2)with hybrid 1D/2D architecture could effectively enhance the active specific surface area of electrode and improve space utilization,as well as significantly facilitate electrons transport,while Ni foam served as the Ni source of Ni_(3)Se_(2)and provided 3D multi-electron transport channels,thus boosting the specific capacity.The constructed hierarchical NSR-Ni_(3)Se_(2)electrode delivered a superior areal specific capacity of 1.068 mAh/cm^(2)(7.69 F/cm^(2))at 2 mA/cm^(2)and retained 68.2%of the initial capacity when the current density increases by 15 times.Furthermore,the as-assembled NSR-Ni_(3)Se_(2)device exhibited an ultrahigh energy density of 56.4 Wh/kg and high power density of 4640.3 W/kg,and a capacity retention of 92.6%even after 6000 cycles. 展开更多
关键词 Hybrid supercapacitors Hierarchical Ni_(3)Se_(2)nanosheet-on-nanorods freestanding electrode Ni foam-assisted confinement assembly Microstructure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部