Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a m...Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas.展开更多
Supported metal catalysts play a vital role in the chemical industry, and the metal-support interaction is an important property of the catalyst. However, in the traditional impregnation method, it is difficult to obt...Supported metal catalysts play a vital role in the chemical industry, and the metal-support interaction is an important property of the catalyst. However, in the traditional impregnation method, it is difficult to obtain sufficient metal-support interactions owing to the mobility of the metal precursor during evaporation drying. Here, freeze drying is applied during impregnation instead of evaporation drying for enhancing the metal-support interactions. 57 Fe ZSM-5 was chosen as a representative catalyst. A quantitative analysis was conducted based on Mossbauer spectroscopy. Compared with traditional evaporation-drying catalyst, freeze-drying catalyst has stronger metal-support interactions. In addition, more iron species are confined in the channel and smaller metal sizes and less diversity are obtained. The compositional change is also proved because of the superior performance of the freeze-drying catalyst during N2O decomposition. This method can be extended to other supported metal catalysts prepared through an impregnation method, which can be used to tune the metal-support interactions and metal sizes.展开更多
Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed...Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed to simulate the ground deformation of the Gongbei tunnel.The coefficient of cold expansion in the model and the frost heaving rate from the frost heave test under the hydration condition can achieve a good correspondence making the calculation result closer to the actual engineering.The ground surface uplift along the lateral and longitudinal direction are respectively analyzed and compared with the field measured data to validate the model.The results show that a good agreement between the frost heaving prediction model and the field measured data verifies the rationality and applicability of the proposed model.The maximum uplift of the Gongbei tunnel appears at the center of the model,gradually decreasing along with the lateral and longitudinal directions.The curve in the lateral direction presents a normal distribution due to the influence of the constraint of two sides,while the one along the lateral direction shapes like a parabola with the opening downward due to the temperature field distribution.The model provides a reference for frost heaving engineering calculation.展开更多
A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering beha...A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions.展开更多
To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to char...To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.展开更多
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma...The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP.展开更多
Plant antifreeze proteins(AFPs)are special proteins that can protect plant cells from ice crystal damage in low-temperature environments,and they play a crucial role in the process of plants adapting to cold environ-m...Plant antifreeze proteins(AFPs)are special proteins that can protect plant cells from ice crystal damage in low-temperature environments,and they play a crucial role in the process of plants adapting to cold environ-ments.Proteins with these characteristics have been found infish living in cold regions,as well as many plants and insects.Although research on plant AFPs started relatively late,their application prospects are broad,leading to the attention of many researchers to the isolation,cloning,and genetic improvement of plant AFP genes.Studies have found that the distribution of AFPs in different species seems to be the result of independent evolu-tionary events.Unlike the AFPs found infish and insects,plant AFPs have multiple hydrophilic ice-binding domains,and their recrystallization inhibition activity is about 10–100 times that offish and insect AFPs.Although different plant AFPs have the characteristics of low TH and high RI,their DNA and amino acid sequences are completely different,with small homology.With in-depth research and analysis of the character-istics and mechanisms of plant AFPs,not only has our understanding of plant antifreeze mechanisms been enriched,but it can also be used to improve crop varieties and enhance their freezing tolerance,yield,and quality through genetic engineering.In addition,the study of plant AFPs also contributes to our understanding of freezing resistance mechanisms in other organisms and provides new research directions for thefield of biotech-nology.Therefore,based on the analysis of relevant literature,this article will delve into the concepts,character-istics,research methods,and mechanisms of plant AFPs,summarize the latest research progress and application prospects of AFPs in plant,and provide prospects for the future development of AFP gene research.展开更多
This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This per...This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This perspective challenges the conventional Big Bang theory, particularly concerning dark matter, the expansion of the universe, and the interpretation of phenomena such as gravitational waves.展开更多
目的探讨智能冠状动脉运动追踪平台Snapshot Freeze(SSF)在冠状动脉CT血管成像(CCTA)中的应用价值。方法连续选取61例患者,使用Discovery CT750 HD Freedom进行冠状动脉扫描,扫描后分别使用和不使用SSF重建,得到A、B两组图像;根据...目的探讨智能冠状动脉运动追踪平台Snapshot Freeze(SSF)在冠状动脉CT血管成像(CCTA)中的应用价值。方法连续选取61例患者,使用Discovery CT750 HD Freedom进行冠状动脉扫描,扫描后分别使用和不使用SSF重建,得到A、B两组图像;根据扫描实时心率将患者分为低心率组(心率≤70次/分,n=34),中高心率组(心率71~80次/分,n=14)和高心率组(心率〉80次/分,n=13)。对比分析A、B组间和不同心率组间的图像质量差异。结果除左主干(S5)外,B组冠状动脉各节段图像质量评分均优于A组(P均〈0.05);S5段剔除评分为5分者后,其余7例B组图像质量均优于A组(P=0.008);未使用SSF重建时不可诊断的42个节段经用SSF重建后全部可用于诊断。未使用SSF重建的不同心率组间除S7、S9段外,其余各节段图像质量评分差异均有统计学意义(P均〈0.05),图像质量随心率增加而下降;使用SSF重建后,不同心率组间各节段图像质量评分差异均无统计学意义(P均〉0.05)。未使用SSF重建的右冠状动脉中段(S2)在15段中评分最低(2.88±0.91)分,S3次之(3.65±1.32)分,且S2在低心率组亦有17例出现移动伪影影响其评估;使用SSF重建后,S2、S3移动伪影显著改善,评分分别提升至(4.32±0.59)分和(4.49±0.59)分,均满足诊断需求。结论 SSF能够有效地纠正高心率及心率波动导致的冠状动脉血管移动伪影,优化CCTA图像质量,尤其对右冠状动脉移动伪影有显著意义。展开更多
In order to take advantage of the climate resources more effectively ac- cording to the local circumstances and to plan and develop the citrus industry in Southern Shaanxi more reasonably. On the basis of the investig...In order to take advantage of the climate resources more effectively ac- cording to the local circumstances and to plan and develop the citrus industry in Southern Shaanxi more reasonably. On the basis of the investigation of freeze dam- age to citrus occurring in Southern Shaanxi in the winter of 2010, the climatic back- ground for the formation of this freeze damage was analyzed. In combination with the freeze damage indicators during the overwintering period and the harmful accu- mulated cold during the cold wave, indexes for grading the freeze damage in southern Shaanxi were analyzed and verified, and the perspective of grading the freeze damage using the harmful accumulated cold during the cold wave was also presented. Through analyzing the extremely lowest temperature and the harmful ac- cumulated cold in the winter of 2010 and in history at 12 citrus growing counties (districts) in Ankang area and Hanzhong area, the reasons why the freeze damage to citrus during the overwintering period was severer in the west than in the east of Southern Shaanxi were discussed, and the results obtained were basically consistent with the actual situation observed from investigation. Finally, defensive countermea- sures against the freeze damage to citrus during the overwintering period were put forward from several aspects.展开更多
The ultrastructure of the vegetative cells of Nostoc flagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conv...The ultrastructure of the vegetative cells of Nostoc flagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conventional preparation methods. During the processes of chemical fixation, dehydration and embedding, the cell structures might be more artificially modified than that obtained from high pressure freezing and freeze substitution. With the present method, the sheath of N. flagelliforme could be well penetrated and no extra big space could exist between the cell and the sheath. The cell protoplasm rarely shrinked. Some fine structures of cell inclusions and unit membranes became visualized. Many bacteria were harbored in the sheath. In addition, the presence of big vacuoles in the cell of N. flagelliforme as well as the presence of bacteria in the sheath shown in the present preparation for cyanobacteria has not been described so far in the literature.展开更多
Using Tongxian No.2 as material, the effects of different film-covering time, different sowing time and different planting density on the occurrence of freeze injury and yield of fresh broad beans were investigated. T...Using Tongxian No.2 as material, the effects of different film-covering time, different sowing time and different planting density on the occurrence of freeze injury and yield of fresh broad beans were investigated. The randomized block design was adopted. The results showed that with the delayed film covering, the incidence of mild freeze injury and number of headless seedlings were increased correspondingly, but the yield was increased; with the delayed sowing, the branch number per plant, effective branch number per plant, incidence of mild freeze injury and number of headless seedlings were all reduced, and the broad beans, sowed on September 30 th, obtained the highest yield; planting density showed on effect on the occurrence of freeze injury, and the yield was increased with the increase of planting density. Under the same film-covering time, the incidence of freeze injury was reduced with the delayed sowing time and it showed no changes when planting density was changed, but the yield was increased with the increase of planting density and it was highest when broad bean seeds were sowed on September 30th;under the same sowing time, the incidence of freeze injury was increased with the delayed film-covering time and it showed no changes when planting density was changed, and the yield was increased with the delayed film-covering time and increased planting density; under the same planting density, the incidence of freeze injury was increased with the delayed film-covering time but was reduced with the delayed sowing time, and the yield was increased with the delayed film-covering time and it was highest when the broad bean seeds were sowed on September30 th. Under same film-covering time and sowing time, the total branch number per plant and effective branch number per plant were reduced, but the yield was increased with the increase of planting density; under same film-covering time and planting density, the incidence of freeze injury was reduced with the delayed sowing time, and the yield was highest when broad bean seeds were sowed on September30th; under same sowing time and planting density, the incidence of freeze injury and the yield were all increased with the delayed film-covering time.展开更多
Freeze injury is an usual disaster for winter wheat in Shanxi Province, China, and monitoring freeze injury is of important economic significance. The aim of this article is to monitor and analyze the winter wheat fre...Freeze injury is an usual disaster for winter wheat in Shanxi Province, China, and monitoring freeze injury is of important economic significance. The aim of this article is to monitor and analyze the winter wheat freeze injury using remote sensing data, to monitor the occurrence and spatial distribution of winter wheat freeze in time, as well as the severity of the damage. The winter wheat freeze injury was monitored using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data, combined with ground meteorological data and field survey data, the change of normalized difference vegetation index (NDVI) before and after freeze injury was analyzed, as well as the effect of winter wheat growth recovery rate on yield. The results showed that the NDVI of winter wheat decreased dramatically after the suffering from freeze injury, which was the prominent feature for the winter wheat freeze injury monitoring. The degrees of winter wheat freeze injury were different in the three regions, of which, Yuncheng was the worst severity and the largest freeze injury area, the severity of freeze injury correlates with the breeding stage of the winter wheat. The yield of winter wheat showed positive correlation with its growth recovery rate (r=0.659^** which can be utilized to monitor the severity of winter wheat freeze injury as well as its impact on yield. It can effectively monitor the occurrence and severity of winter wheat freeze injury using horizontal and vertical profile distribution and growth wheat freeze injury in Shanxi Province. recovery rate, and provide a basis for monitoring the winter展开更多
Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in t...Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.展开更多
At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components o...At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components of PEMFC-membrane-electrode assembly (MEA) and seek feasible measures to avoid degradation. The effect of freeze/thaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freeze/thaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable performance under subzero temperature and gas purging is proved to be the effective operation.展开更多
We design a weather-based indemnity index for the insurance against freeze damage to citrus orchards so as to provide technological support for the development of policy-based agriculture. The indices are prepared by ...We design a weather-based indemnity index for the insurance against freeze damage to citrus orchards so as to provide technological support for the development of policy-based agriculture. The indices are prepared by separating a relative meteorological yield from the yield that is dependent on tree age, high-yield and low-yield years, and environmental factors, and then using a risk assessment scheme to determine the percentage yield reduction due to the meteorological hazard. We thus develop a set of indices associated with cold temperature damage with which to construct more severe weather indices in conjunction with the yield percentage decrease. We then combine the insured regional citrus yield index with the insured meteorological counterpart to obtain a weather-based indemnity index for the varying degree of freeze damage to crops. When the freeze damage index (FDI) is greater than -7.0℃ for the coastal belt of Zhejiang Province, China, or greater than -9.0℃ for other regions of Zhejiang, weather-based indemnity index (WBII) is zero, meaning there is no compensation; when the FDI is from -7.0 to -7.9℃ for the coastal belt or from -9.0 to -9.9℃ for other regions, the WBII is 1 with 50% compensation; when the FDI is from -8.0 to -8.9℃ for the coastal belt or from -10.0 to -10.9℃ for other regions, the WBII is 2 with 70% compensation; and when the FDI is less than -9.0℃ for the coastal belt or less than -11.0℃ for other regions, the WBII is 3 with 90% compensation. The weather indemnity indices of insured orchards are developed in the interest of owners, thereby eliminating adverse selection and moral hazard issues and providing timely recompense from the insurer, and resolving the problem of high indemnity cost in agricultural insurance.展开更多
A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution upt...A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution uptake by the capillary rise method was used to evaluate the liquid penetration properties of the treated wood. The pit aspiration ratio was determined by semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results showed that compared with air drying, the freeze drying had a significant effect on liquid penetration of sapwood and heartwood of Chinese fir. The liquid penetration of sapwood is significantly higher than that of the heartwood for both drying treatments. Low pit aspiration ratio and cracks of pits membrane of some bordered pits are the main reasons for increasing liquid penetration after freeze drying treatment.展开更多
Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studie...Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, thev turned brown after thawing.展开更多
基金Projects(41672312, 41972294) supported by the National Natural Science Foundation of ChinaProject(2017CFA056) supported by the Outstanding Youth Foundation of Hubei Province, ChinaProject(KFJ170104) supported by the Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology, China。
文摘Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas.
基金supported by the National Key R&D Program of China(2016YFA0202900)the National Natural Science Foundation of China(21622606)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LR18B060001)the Fundamental Research Funds for the Central Universities~~
文摘Supported metal catalysts play a vital role in the chemical industry, and the metal-support interaction is an important property of the catalyst. However, in the traditional impregnation method, it is difficult to obtain sufficient metal-support interactions owing to the mobility of the metal precursor during evaporation drying. Here, freeze drying is applied during impregnation instead of evaporation drying for enhancing the metal-support interactions. 57 Fe ZSM-5 was chosen as a representative catalyst. A quantitative analysis was conducted based on Mossbauer spectroscopy. Compared with traditional evaporation-drying catalyst, freeze-drying catalyst has stronger metal-support interactions. In addition, more iron species are confined in the channel and smaller metal sizes and less diversity are obtained. The compositional change is also proved because of the superior performance of the freeze-drying catalyst during N2O decomposition. This method can be extended to other supported metal catalysts prepared through an impregnation method, which can be used to tune the metal-support interactions and metal sizes.
基金supported by the financial support from National Natural Science Foundation of China(No.51478340)Natural Science Foundation of Jiangsu Province(No.BK20200707)+4 种基金The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJB560029)China Postdoctoral Science Foundation(No.2020M671670)Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education(No.2020P04)the support above is gratefully acknowledged.
文摘Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed to simulate the ground deformation of the Gongbei tunnel.The coefficient of cold expansion in the model and the frost heaving rate from the frost heave test under the hydration condition can achieve a good correspondence making the calculation result closer to the actual engineering.The ground surface uplift along the lateral and longitudinal direction are respectively analyzed and compared with the field measured data to validate the model.The results show that a good agreement between the frost heaving prediction model and the field measured data verifies the rationality and applicability of the proposed model.The maximum uplift of the Gongbei tunnel appears at the center of the model,gradually decreasing along with the lateral and longitudinal directions.The curve in the lateral direction presents a normal distribution due to the influence of the constraint of two sides,while the one along the lateral direction shapes like a parabola with the opening downward due to the temperature field distribution.The model provides a reference for frost heaving engineering calculation.
基金supported by the National Natural Science Foundation of China(Grant No.41672295)the Major Systematic Project of Scientific and Technological Research and Development Plan of China Railway Corporation(Grant No.P2018G047)supported by a PhD fellowship from the China Scholarship Council.Roberto Tomás was partially funded by the Conselleria de Innovación,Universidades,Ciencia y Sociedad Digital de la Generalitat Valenciana(CIAICO/2021/335).
文摘A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions.
基金supported by the National Natural Science Foundation of China(Project No.52074123).
文摘To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.
基金supported by Shandong Provincial Natural Science Foundation (grant number: ZR2023MD036)Key Research and Development Project in Shandong Province (grant number: 2019GGX101064)project for excellent youth foundation of the innovation teacher team, Shandong (grant number: 2022KJ310)。
文摘The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP.
基金funded by the Fundamental Research Funds for the Central Universities under Grant No.BFUKF202309Special Scientific Research Fund of Talents Introduced into Hebei Agricultural University under Grant No.YJ2022025+1 种基金Basic Scientific Research Projects of Provincial Universities in Hebei Province under Grant No.KY202203Hebei Agriculture Research System under Grant No.HBCT2024200101,S&T Program of Hebei under Grant No.21326301D.
文摘Plant antifreeze proteins(AFPs)are special proteins that can protect plant cells from ice crystal damage in low-temperature environments,and they play a crucial role in the process of plants adapting to cold environ-ments.Proteins with these characteristics have been found infish living in cold regions,as well as many plants and insects.Although research on plant AFPs started relatively late,their application prospects are broad,leading to the attention of many researchers to the isolation,cloning,and genetic improvement of plant AFP genes.Studies have found that the distribution of AFPs in different species seems to be the result of independent evolu-tionary events.Unlike the AFPs found infish and insects,plant AFPs have multiple hydrophilic ice-binding domains,and their recrystallization inhibition activity is about 10–100 times that offish and insect AFPs.Although different plant AFPs have the characteristics of low TH and high RI,their DNA and amino acid sequences are completely different,with small homology.With in-depth research and analysis of the character-istics and mechanisms of plant AFPs,not only has our understanding of plant antifreeze mechanisms been enriched,but it can also be used to improve crop varieties and enhance their freezing tolerance,yield,and quality through genetic engineering.In addition,the study of plant AFPs also contributes to our understanding of freezing resistance mechanisms in other organisms and provides new research directions for thefield of biotech-nology.Therefore,based on the analysis of relevant literature,this article will delve into the concepts,character-istics,research methods,and mechanisms of plant AFPs,summarize the latest research progress and application prospects of AFPs in plant,and provide prospects for the future development of AFP gene research.
文摘This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This perspective challenges the conventional Big Bang theory, particularly concerning dark matter, the expansion of the universe, and the interpretation of phenomena such as gravitational waves.
基金Supported by Shaanxi"13115"Public Service Platform Construction Program for Science&Technology Innovation Projects(2010FWPT-17)~~
文摘In order to take advantage of the climate resources more effectively ac- cording to the local circumstances and to plan and develop the citrus industry in Southern Shaanxi more reasonably. On the basis of the investigation of freeze dam- age to citrus occurring in Southern Shaanxi in the winter of 2010, the climatic back- ground for the formation of this freeze damage was analyzed. In combination with the freeze damage indicators during the overwintering period and the harmful accu- mulated cold during the cold wave, indexes for grading the freeze damage in southern Shaanxi were analyzed and verified, and the perspective of grading the freeze damage using the harmful accumulated cold during the cold wave was also presented. Through analyzing the extremely lowest temperature and the harmful ac- cumulated cold in the winter of 2010 and in history at 12 citrus growing counties (districts) in Ankang area and Hanzhong area, the reasons why the freeze damage to citrus during the overwintering period was severer in the west than in the east of Southern Shaanxi were discussed, and the results obtained were basically consistent with the actual situation observed from investigation. Finally, defensive countermea- sures against the freeze damage to citrus during the overwintering period were put forward from several aspects.
文摘The ultrastructure of the vegetative cells of Nostoc flagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conventional preparation methods. During the processes of chemical fixation, dehydration and embedding, the cell structures might be more artificially modified than that obtained from high pressure freezing and freeze substitution. With the present method, the sheath of N. flagelliforme could be well penetrated and no extra big space could exist between the cell and the sheath. The cell protoplasm rarely shrinked. Some fine structures of cell inclusions and unit membranes became visualized. Many bacteria were harbored in the sheath. In addition, the presence of big vacuoles in the cell of N. flagelliforme as well as the presence of bacteria in the sheath shown in the present preparation for cyanobacteria has not been described so far in the literature.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(12)3006]Jiangsu Province Science and Technology Support Program,China(BE2013352)Study on Saving the Cost Facility Cultivation Techniques of High-quality,Safe and Efficient in Fresh Faba Bean(HL2014029)~~
文摘Using Tongxian No.2 as material, the effects of different film-covering time, different sowing time and different planting density on the occurrence of freeze injury and yield of fresh broad beans were investigated. The randomized block design was adopted. The results showed that with the delayed film covering, the incidence of mild freeze injury and number of headless seedlings were increased correspondingly, but the yield was increased; with the delayed sowing, the branch number per plant, effective branch number per plant, incidence of mild freeze injury and number of headless seedlings were all reduced, and the broad beans, sowed on September 30 th, obtained the highest yield; planting density showed on effect on the occurrence of freeze injury, and the yield was increased with the increase of planting density. Under the same film-covering time, the incidence of freeze injury was reduced with the delayed sowing time and it showed no changes when planting density was changed, but the yield was increased with the increase of planting density and it was highest when broad bean seeds were sowed on September 30th;under the same sowing time, the incidence of freeze injury was increased with the delayed film-covering time and it showed no changes when planting density was changed, and the yield was increased with the delayed film-covering time and increased planting density; under the same planting density, the incidence of freeze injury was increased with the delayed film-covering time but was reduced with the delayed sowing time, and the yield was increased with the delayed film-covering time and it was highest when the broad bean seeds were sowed on September30 th. Under same film-covering time and sowing time, the total branch number per plant and effective branch number per plant were reduced, but the yield was increased with the increase of planting density; under same film-covering time and planting density, the incidence of freeze injury was reduced with the delayed sowing time, and the yield was highest when broad bean seeds were sowed on September30th; under same sowing time and planting density, the incidence of freeze injury and the yield were all increased with the delayed film-covering time.
基金supported by grants from the Key Tech-nologies R&D Program of Shanxi Province, China(20060311140)the Open Project Program of Weather Bureau of Shanxi Province, China (SX053001)
文摘Freeze injury is an usual disaster for winter wheat in Shanxi Province, China, and monitoring freeze injury is of important economic significance. The aim of this article is to monitor and analyze the winter wheat freeze injury using remote sensing data, to monitor the occurrence and spatial distribution of winter wheat freeze in time, as well as the severity of the damage. The winter wheat freeze injury was monitored using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data, combined with ground meteorological data and field survey data, the change of normalized difference vegetation index (NDVI) before and after freeze injury was analyzed, as well as the effect of winter wheat growth recovery rate on yield. The results showed that the NDVI of winter wheat decreased dramatically after the suffering from freeze injury, which was the prominent feature for the winter wheat freeze injury monitoring. The degrees of winter wheat freeze injury were different in the three regions, of which, Yuncheng was the worst severity and the largest freeze injury area, the severity of freeze injury correlates with the breeding stage of the winter wheat. The yield of winter wheat showed positive correlation with its growth recovery rate (r=0.659^** which can be utilized to monitor the severity of winter wheat freeze injury as well as its impact on yield. It can effectively monitor the occurrence and severity of winter wheat freeze injury using horizontal and vertical profile distribution and growth wheat freeze injury in Shanxi Province. recovery rate, and provide a basis for monitoring the winter
基金funded by the National Natural Science Foundation of China(Grant No.41401611,41301072)China Postdoctoral Science Foundation(Grant No.2014M560817,2015T81069)the Open Project Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE201208)
文摘Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.
基金Supported by the National Natural Science Foundation of China (No.20206030) and Ministry of Science and Technology 863 Hi-Technology Research and Development Program of China (2005AA501660).
文摘At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components of PEMFC-membrane-electrode assembly (MEA) and seek feasible measures to avoid degradation. The effect of freeze/thaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freeze/thaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable performance under subzero temperature and gas purging is proved to be the effective operation.
基金supported by the National Natural Science Foundation of China (30370914)the major projects of Zhejiang Province Weather Bureau,China(2006zd005)
文摘We design a weather-based indemnity index for the insurance against freeze damage to citrus orchards so as to provide technological support for the development of policy-based agriculture. The indices are prepared by separating a relative meteorological yield from the yield that is dependent on tree age, high-yield and low-yield years, and environmental factors, and then using a risk assessment scheme to determine the percentage yield reduction due to the meteorological hazard. We thus develop a set of indices associated with cold temperature damage with which to construct more severe weather indices in conjunction with the yield percentage decrease. We then combine the insured regional citrus yield index with the insured meteorological counterpart to obtain a weather-based indemnity index for the varying degree of freeze damage to crops. When the freeze damage index (FDI) is greater than -7.0℃ for the coastal belt of Zhejiang Province, China, or greater than -9.0℃ for other regions of Zhejiang, weather-based indemnity index (WBII) is zero, meaning there is no compensation; when the FDI is from -7.0 to -7.9℃ for the coastal belt or from -9.0 to -9.9℃ for other regions, the WBII is 1 with 50% compensation; when the FDI is from -8.0 to -8.9℃ for the coastal belt or from -10.0 to -10.9℃ for other regions, the WBII is 2 with 70% compensation; and when the FDI is less than -9.0℃ for the coastal belt or less than -11.0℃ for other regions, the WBII is 3 with 90% compensation. The weather indemnity indices of insured orchards are developed in the interest of owners, thereby eliminating adverse selection and moral hazard issues and providing timely recompense from the insurer, and resolving the problem of high indemnity cost in agricultural insurance.
基金This paper was supported by the National Natural Science Foundation of China (No. 30271053)
文摘A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution uptake by the capillary rise method was used to evaluate the liquid penetration properties of the treated wood. The pit aspiration ratio was determined by semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results showed that compared with air drying, the freeze drying had a significant effect on liquid penetration of sapwood and heartwood of Chinese fir. The liquid penetration of sapwood is significantly higher than that of the heartwood for both drying treatments. Low pit aspiration ratio and cracks of pits membrane of some bordered pits are the main reasons for increasing liquid penetration after freeze drying treatment.
文摘Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, thev turned brown after thawing.