Freeze-thaw erosion is the third largest soil erosion type after water erosion and wind erosion. Restricted by many factors, few researches on freeze-thaw erosion have so far been done at home and abroad, especially t...Freeze-thaw erosion is the third largest soil erosion type after water erosion and wind erosion. Restricted by many factors, few researches on freeze-thaw erosion have so far been done at home and abroad, especially those on the assessment method of freeze-thaw erosion. Based on the comprehensive analysis of impact factors of free-thaw erosion, this paper chooses six indexes, including the annual temperature range, annual precipitation, slope, aspect, vegetation and soil, to build the model for relative classification of freeze-thaw erosion using weighted and additive methods, and realizes the relative classification of the freeze-thaw erosion in Tibet with the support of GIS software. Then a synthetic assessment of freeze-thaw erosion in Tibet has been carried out according to the relative classification result. The result shows that the distribution of freeze-thaw eroded area is very extensive in Tibet, accounting for 55.3% of the total local land area; the spatial differentiation of freeze-thaw erosion with different intensities is obvious; and the difference in distribution among different regions is also obvious.展开更多
The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT proce...The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT process in the TRSR, we introduce the driving force factors of FT erosion(rainfall erosivity and wind field intensity during FT period) and precipitation during the FT period(indicating the phase-changed water content). The objective was to establish an improved evaluation method of FT erosion in the TRSR. The method has good applicability in the study region with an overall precision of 92%. The spatial and temporal changes of FT erosion from 2000 to 2015 are analyzed. Results show that FT erosion is widely distributed in the TRSR, with slight and mild erosion being the most widely distributed, followed by moderate erosion. Among the three sub-regions, the source region of the Yellow River has the slightest erosion intensity, whereas the erosion intensity of the source region of Yangtze River is the most severe. A slight improvement can be observed in the condition of FTerosion over the whole study region from 2000 to 2015. Vegetation coverage is the dominant factor affecting the intensity of FT erosion in the zones with sparse vegetation or bare land, whereas the climate factors play an important role in high vegetation coverage area. Slopes>28° also have a significant effect on the intensity of FT erosion in the zones. The results can provide a scientific basis for the prevention and management of the soil FT erosion in the TRSR.展开更多
Based on the analysis of existing relevant research result, a theoretical basis for the defining freeze- thaw erosion zones of Qinghai-Tibet Plateau was been put forward, and a equation for calculating the altitude of...Based on the analysis of existing relevant research result, a theoretical basis for the defining freeze- thaw erosion zones of Qinghai-Tibet Plateau was been put forward, and a equation for calculating the altitude of the lower bound of the freeze-thaw erosion zones of Qinghai-Tibet Plateau was been established in this paper. Moreover, the freeze-thaw erosion zones in Tibet was been identified by using Geographical Information System (GIS) software. Next, based on the comprehensive analysis of impact factors of freeze-thaw erosion, this paper chooses annul temperature range, slop and vegetation as three indexes, works out the criteria for relative classification of freeze-thaw erosion, and realizes the relative classification of the freeze-thaw erosion in Tibet under the support of GIS software. Then, a synthetic assessment of freeze-thaw erosion in Tibet was been done according to the relative classification result.展开更多
Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of differe...Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperaturecycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl−ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show thatthe minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. TheCl− ion concentration and growth rate increased with the increasing crack width. Based on the experimental modeland in accordance with Fick’s second law of diffusion, the Cl− ion diffusion equation was modified by introducingcorrection factors in consideration of the freeze-thaw temperature, crack width, and their coupling effect.The experimental and fitting results obtained from this model can provide excellent reference for practical engineeringapplications.展开更多
Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of veg...Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.展开更多
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t...For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.展开更多
The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for...The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.展开更多
Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed so...Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed solid particles in the fracturing fluid.Beneath such complex conditions,the vulnerable components of the pipe system are prone to perforation or even burst accidents,which has become one of the most serious risks at the fracturing site.Unfortunately,it is not yet fully understood the erosion mechanism of pipe steel for hydraulic fracturing.Therefore,this article provides a detailed analysis of the erosion behavior of fracturing pipes under complex working conditions based on experiments and numerical simulations.Firstly,we conducted erosion experiments on AISI 4135 steel for fracturing pipes to investigate the erosion characteristics of the material.The effects of impact angle,flow velocity and applied stress on erosion wear were comprehensively considered.Then a particle impact dynamic model of erosion wear was developed based on the experimental parameters,and the evolution process of particle erosion under different impact angles,impact velocities and applied stress was analyzed.By combining the erosion characteristics,the micro-structure of the eroded area,and the micro-mechanics of erosion damage,the erosion mechanism of pipe steel under fracturing conditions was studied in detail for the first time.Under high-pressure operating conditions,it was demonstrated through experiments and numerical simulations that the size of the micro-defects in the eroded area increased as the applied stress increased,resulting in more severe erosion wear of fracturing pipes.展开更多
The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on ...The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.展开更多
The original online version of this article was revised.The first author is“ZHANG Weng-xiang”in the original article.The first author’s name has been corrected to“ZHANG Wen-xiang”.
Dear Editor,We report a case with trans-photorefractive keratectomy(PRK)for recurrent epithelial corneal erosion caused by cooking oil after EVO-implantable contact lens(ICL)(EVO Visian ICL;STAAR Surgical AG,Switzerla...Dear Editor,We report a case with trans-photorefractive keratectomy(PRK)for recurrent epithelial corneal erosion caused by cooking oil after EVO-implantable contact lens(ICL)(EVO Visian ICL;STAAR Surgical AG,Switzerland),which should be distinguished from postoperative complications of EVO-ICL.Most corneal burns are classified as chemical and thermal burns,referring to direct contact injury to the cornea.展开更多
Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill ...Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill slopes. A study was conducted using a sprinkler rainfall simulator and plot experiment to study soil erosion processes. Soil samples were collected from four farms in Gidan Kwanu, with varying moisture content. Sand content ranged from 46.0% to 76.20%, silt from 11.30% to 23.50%, and clay from 11.0% to 30.0%. Uncultivated and bare land had a higher average porosity (15.47% and 14.99%), while cultivated land had lower porosity (14.4%). The study found that most people in Gidan-Kwanu primarily practice farming, which is season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. The study concluded that farming practices in Gidan-Kwanu are primarily season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil.展开更多
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow...During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.展开更多
Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thu...Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE.展开更多
aSoil degradation caused by soil erosion is one of the world's most critical environmental issues.Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas.This stud...aSoil degradation caused by soil erosion is one of the world's most critical environmental issues.Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas.This study used remote sensing data to analyze the distribution of the factors influencing soil erosion,and the revised universal soil loss equation(RUSLE)to calculate the total amount and distribution characteristics of soil erosion in the Tianshan Mountains in 2019.Due to the large error of RUSLE in soil erosion estimation in mountainous areas,this study modified RUSLE equation based on the characteristics of snow cover in the Tianshan Mountains.The results show that the average soil erosion was 1690.3 t/(km^(2)·year),of which insignificant erosion,slight erosion and moderate erosion accounted for 42,8%,22.4%and 9.9%,respectively.Severe erosion and above accounted for 13.3%.The accuracy of the soil erosion modulus calculated by the RUSLE was only 61.9%,with an average error of 1631.9 t/(km^(2)·year).The average error of the double-coefficient correction method was 1259.1 t/(km^(2)·year),and the average error of the modified formula method was reduced by 40.3%compared with the RUSLE,reaching 973.7 t/(km^(2)·year),and its accuracy reached 76.2%.Very severe erosion and catastrophic erosion are distributed on mountain ridges with higher elevation and on the northern area with higher precipitation.Snow cover has a certain inhibitory effect on soil erosion,and snow cover in alpine mountains is a factor that cannot be ignored in soil erosion research.展开更多
The unique geomorphological features and farming methods in the Mollisol region of Northeast China increase water catchment flow and aggravate the erosion of ephemeral gully(EG).Vegetation suffers from rain erosion an...The unique geomorphological features and farming methods in the Mollisol region of Northeast China increase water catchment flow and aggravate the erosion of ephemeral gully(EG).Vegetation suffers from rain erosion and damage during the growth stage,which brings serious problems to the restoration of grass in the early stage.Therefore,effects of coir geotextile and geocell on EG erosion under four confluence intensities were researched in this study.Results of the simulated water discharge erosion test showed that when the confluence strength was less than 30 L/min,geocell and coir geotextile had a good effect on controlling EG erosion,and sediment yield of geocell and coir geotextile was reduced by 25.95%–37.82%and 73.73%–88.96%,respectively.However,when confluence intensity increased to 40 L/min,protective effect of coir geotextile decreased,and sediment yield rate increased sharply by 189.03%.When confluence intensity increased to 50 L/min,the protective effect of coir geotextile was lost.On the other hand,geocell showed that the greater the flow rate,the better the protective effect.In addition,with the increase in confluence intensity,erosion pattern of coir geotextile developed from sheet erosion to intermittent fall and then to completion of main rill,and the protective effect was gradually weakened.In contrast,the protective effect of EG under geocell was gradually enhanced from the continuous rill to the intermittent rill and finally to the intermittent fall.This study shows that coir geotextile and geocell can prevent EG erosion,and the effect of geocell is better than that of coir geotextile on the surface of EG.展开更多
In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique ...In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique has been previously demonstrated to effectively improve the erosion resistance of slopes.Seawater contains magnesium ions(Mg^(2+))with a higher concentration than calcium ions(Ca^(2+));therefore,Mg^(2+)and Ca^(2+)were used together for bio-cementation in this study at various Mg^(2+)/Ca^(2+)ratios as the microbially induced magnesium and calcium precipitation(MIMCP)treatment.Slope angles,surface strengths,precipitation contents,major phases,and microscopic characteristics of precipitation were used to evaluate the treatment effects.Results showed that the MIMCP treatment markedly enhanced the erosion resistance of slopes.Decreased Mg^(2+)/Ca^(2+)ratios resulted in a smaller change in angles and fewer soil losses,especially the Mg^(2+)concentration below 0.2 M.The decreased Mg^(2+)/Ca^(2+)ratio achieved increased precipitation contents,which contributed to better erosion resistance and higher surface strengths.Additionally,the production of aragonite would benefit from elevated Mg^(2+)concentrations and a higher Ca^(2+)concentration led to more nesquehonite in magnesium precipitation crystals.The slopes with an initial angle of 53°had worse erosion resistance than the slopes with an initial angle of 35°,but the Mg^(2+)/Ca^(2+)ratios of 0.2:0.8,0.1:0.9,and 0:1.0 were effective for both slope stabilization and erosion mitigation to a great extent.The results are of great significance for the application of MIMCP to improve erosion resistance of foreshore slopes and the MIMCP technique has promising application potential in marine engineering.展开更多
In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-co...In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-consistent model. The simulation results predicted a constricted arc column and obvious anode phenomena in Cu–Cr alloy contacts than in W–Cu alloy contacts.This observation could be the reason for the concentrated anode erosion in Cu–Cr alloys. For the contacts made by pure tungsten(W) and W–Cu alloy, the anode temperature increased rapidly because of the low specific heat of W. However, the maximum energy flux from the arc column to the anode surface was lower than in other cases. The simulation results were compared with experimental results.展开更多
Cape Stone Forest is a group of granite rock pillars(pedestal rocks) towering over Shilin Lake, on the southern shore of Shantou Bay in eastern Guangdong, China. The rock pillars were previously identified as sea stac...Cape Stone Forest is a group of granite rock pillars(pedestal rocks) towering over Shilin Lake, on the southern shore of Shantou Bay in eastern Guangdong, China. The rock pillars were previously identified as sea stacks because they have marine notch-like concave sidewalls at their base, and more importantly, the lake is immediately adjacent to the bay, which is exposed to the open sea. However, rock pillars similar in shape and size can also be found at the top of Queshi Mountain, which is only about 300 meters northwest of the lake and about 85 meters above sea level. Therefore, the marine origin of Cape Stone Forest is seriously questioned. In this study, 3D imagery and drone technology were used to collect data in the investigations without direct manual measurements in the water or on the mountain. It shows that the concave sidewalls of the rock pillars in the lake and on the mountains occur at different heights and are exposed to different directions, while a natural sea stack on Mayu Island at the mouth of Shantou Bay has a horizontal notch parallel to the sea level, although the granite rock of the sea stack is the same as that of the lake and the mountains. The eastern side of the island, where the sea stack is located, is exposed to the open sea but blocks large waves for the rock pillars in the lake. Therefore, the origin of Cape Stone Forest cannot be explained by wave-based mechanisms. The only satisfactory explanation that takes into account all the field evidence is that the narrow rock pillars of the lake and mountain were formed by chemical weathering that penetrated closely the spaced joints of the granite rock, and the notch-like concave sidewalls were formed by more effective chemical weathering at the base of the pillars.展开更多
Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flo...Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand.展开更多
基金Key Basic Research Project of China, No.2004CCA03600
文摘Freeze-thaw erosion is the third largest soil erosion type after water erosion and wind erosion. Restricted by many factors, few researches on freeze-thaw erosion have so far been done at home and abroad, especially those on the assessment method of freeze-thaw erosion. Based on the comprehensive analysis of impact factors of free-thaw erosion, this paper chooses six indexes, including the annual temperature range, annual precipitation, slope, aspect, vegetation and soil, to build the model for relative classification of freeze-thaw erosion using weighted and additive methods, and realizes the relative classification of the freeze-thaw erosion in Tibet with the support of GIS software. Then a synthetic assessment of freeze-thaw erosion in Tibet has been carried out according to the relative classification result. The result shows that the distribution of freeze-thaw eroded area is very extensive in Tibet, accounting for 55.3% of the total local land area; the spatial differentiation of freeze-thaw erosion with different intensities is obvious; and the difference in distribution among different regions is also obvious.
基金funded by the Open fund of Key Laboratory for Digital Land and Resources of Jiangxi Province, East China University of Technology (Grant No. DLLJ201709)Open fund of Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geoinformation (Grant No. 2016NGCM02)+2 种基金Open fund of Key Laboratory of Precise Engineering and Industry Surveying (Grant No. PF2015-17)National Administration of Surveying, Mapping and Geoinformation, National Natural Science Foundation of China (Grant Nos. 41501416, 40775019)the Natural Science Foundation of Shandong Province (Grant Nos. ZR2014DL001, ZR2015DL005)
文摘The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT process in the TRSR, we introduce the driving force factors of FT erosion(rainfall erosivity and wind field intensity during FT period) and precipitation during the FT period(indicating the phase-changed water content). The objective was to establish an improved evaluation method of FT erosion in the TRSR. The method has good applicability in the study region with an overall precision of 92%. The spatial and temporal changes of FT erosion from 2000 to 2015 are analyzed. Results show that FT erosion is widely distributed in the TRSR, with slight and mild erosion being the most widely distributed, followed by moderate erosion. Among the three sub-regions, the source region of the Yellow River has the slightest erosion intensity, whereas the erosion intensity of the source region of Yangtze River is the most severe. A slight improvement can be observed in the condition of FTerosion over the whole study region from 2000 to 2015. Vegetation coverage is the dominant factor affecting the intensity of FT erosion in the zones with sparse vegetation or bare land, whereas the climate factors play an important role in high vegetation coverage area. Slopes>28° also have a significant effect on the intensity of FT erosion in the zones. The results can provide a scientific basis for the prevention and management of the soil FT erosion in the TRSR.
文摘Based on the analysis of existing relevant research result, a theoretical basis for the defining freeze- thaw erosion zones of Qinghai-Tibet Plateau was been put forward, and a equation for calculating the altitude of the lower bound of the freeze-thaw erosion zones of Qinghai-Tibet Plateau was been established in this paper. Moreover, the freeze-thaw erosion zones in Tibet was been identified by using Geographical Information System (GIS) software. Next, based on the comprehensive analysis of impact factors of freeze-thaw erosion, this paper chooses annul temperature range, slop and vegetation as three indexes, works out the criteria for relative classification of freeze-thaw erosion, and realizes the relative classification of the freeze-thaw erosion in Tibet under the support of GIS software. Then, a synthetic assessment of freeze-thaw erosion in Tibet was been done according to the relative classification result.
基金the Key Laboratory of Intelligent Health Perception and Lakes,Ministry of Education,Hubei University of Technology(No.2020EJB004)National Natural Science Foundation of China(No.51508171)Natural Science Foundation of Hubei Province(No.2020CFB860).
文摘Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperaturecycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl−ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show thatthe minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. TheCl− ion concentration and growth rate increased with the increasing crack width. Based on the experimental modeland in accordance with Fick’s second law of diffusion, the Cl− ion diffusion equation was modified by introducingcorrection factors in consideration of the freeze-thaw temperature, crack width, and their coupling effect.The experimental and fitting results obtained from this model can provide excellent reference for practical engineeringapplications.
基金the financial support received from the University Grants Commission (UGC) in the form of a Junior Research Fellowship (JRF)。
文摘Human activities to improve the quality of life have accelerated the natural rate of soil erosion.In turn,these natural disasters have taken a great impact on humans.Human activities,particularly the conversion of vegetated land into agricultural land and built-up area,stand out as primary contributors to soil erosion.The present study investigated the risk of soil erosion in the Irga watershed located on the eastern fringe of the Chota Nagpur Plateau in Jharkhand,India,which is dominated by sandy loam and sandy clay loam soil with low soil organic carbon(SOC)content.The study used the Revised Universal Soil Loss Equation(RUSLE)and Geographical Information System(GIS)technique to determine the rate of soil erosion.The five parameters(rainfall-runoff erosivity(R)factor,soil erodibility(K)factor,slope length and steepness(LS)factor,cover-management(C)factor,and support practice(P)factor)of the RUSLE were applied to present a more accurate distribution characteristic of soil erosion in the Irga watershed.The result shows that the R factor is positively correlated with rainfall and follows the same distribution pattern as the rainfall.The K factor values in the northern part of the study area are relatively low,while they are relatively high in the southern part.The mean value of the LS factor is 2.74,which is low due to the flat terrain of the Irga watershed.There is a negative linear correlation between Normalized Difference Vegetation Index(NDVI)and the C factor,and the high values of the C factor are observed in places with low NDVI.The mean value of the P factor is 0.210,with a range from 0.000 to 1.000.After calculating all parameters,we obtained the average soil erosion rate of 1.43 t/(hm^(2)•a),with the highest rate reaching as high as 32.71 t/(hm^(2)•a).Therefore,the study area faces a low risk of soil erosion.However,preventative measures are essential to avoid future damage to productive and constructive activities caused by soil erosion.This study also identifies the spatial distribution of soil erosion rate,which will help policy-makers to implement targeted soil erosion control measures.
基金financially supported by the Natural Science Foundation of Gansu Province,China(22JR5RA050,20JR10RA231)the fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347).
文摘For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.
基金supported by the Natural Science Foundation of Qinghai Province(Grant No.2024-ZJ-987).
文摘The China Loess Plateau is subjected to severe soil erosion triggered by intense rainfall,resulting in significant harm and losses to both human society and the natural surroundings.In this study,a novel technique for managing loess erosion is introduced,which involves the utilization of a combined polymer SH and ryegrass.A comprehensive series of tests were undertaken,including rainfall erosion tests,disintegration experiments,and scanning electron microscopy examinations,to assess the accumulative sediment yield(ASY),disintegration ratio,and microstructural features of both untreated and treated loess samples.The results showed a significant reduction in ASY with increased dry density of untreated loess.Furthermore,the combined technique effectively controlled erosion,limiting ASY to 266.2 g/cm^(2)in 60 minutes.This was approximately one-sixth,one-ninth,and one-fifteenth of the ASY in SH-treated loess(L-SH),ryegrass-treated loess(L-R),and untreated loess,respectively.It resisted disintegration better than ryegrass alone but slightly less than SH.This improvement was due to the combined effect of SH and ryegrass,which reduced raindrop impact,improved loess microstructure,and boosted ryegrass growth.The innovative technique holds the potential to be applied as a field-scale technique in the Loess Plateau region of China.
基金supported by the National Natural Scienceof China (No.52175208)Scientific Research and Technology Development Project of CNPC (No.2023ZZ11)+1 种基金Fundamental Research and Strategic Reserve Technology Research Fund Project of CNPC (No.2023DQ03-03)Study on Key Technologies of Production Increase and Transformation of Gulong Shale Oil (2021ZZ10-04)。
文摘Erosion wear is a common failure mode in the oil and gas industry.In the hydraulic fracturing,the fracturing pipes are not only in high-pressure working environment,but also suffer from the impact of the high-speed solid particles in the fracturing fluid.Beneath such complex conditions,the vulnerable components of the pipe system are prone to perforation or even burst accidents,which has become one of the most serious risks at the fracturing site.Unfortunately,it is not yet fully understood the erosion mechanism of pipe steel for hydraulic fracturing.Therefore,this article provides a detailed analysis of the erosion behavior of fracturing pipes under complex working conditions based on experiments and numerical simulations.Firstly,we conducted erosion experiments on AISI 4135 steel for fracturing pipes to investigate the erosion characteristics of the material.The effects of impact angle,flow velocity and applied stress on erosion wear were comprehensively considered.Then a particle impact dynamic model of erosion wear was developed based on the experimental parameters,and the evolution process of particle erosion under different impact angles,impact velocities and applied stress was analyzed.By combining the erosion characteristics,the micro-structure of the eroded area,and the micro-mechanics of erosion damage,the erosion mechanism of pipe steel under fracturing conditions was studied in detail for the first time.Under high-pressure operating conditions,it was demonstrated through experiments and numerical simulations that the size of the micro-defects in the eroded area increased as the applied stress increased,resulting in more severe erosion wear of fracturing pipes.
基金Natural Science Foundation of Liaoning Province(2022-MS-305)Foundation of Liaoning Province Education Administration(LJKZ1108).
文摘The effects of the erosion present on the leading edge of a wind turbine airfoil(DU 96-W-180)on its aerodynamic performances have been investigated numerically in the framework of a SST k–ωturbulence model based on the Reynolds Averaged Navier-Stokes equations(RANS).The results indicate that when sand-induced holes and small pits are involved as leading edge wear features,they have a minimal influence on the lift and drag coefficients of the airfoil.However,if delamination occurs in the same airfoil region,it significantly impacts the lift and resistance characteristics of the airfoil.Specifically,as the angle of attack grows,there is a significant decrease in the lift coefficient accompanied by a sharp increase in the drag coefficient.As wear intensifies,these effects gradually increase.Moreover,the leading edge wear can exacerbate flow separation near the trailing edge suction surface of the airfoil and cause forward displacement of the separation point.
文摘The original online version of this article was revised.The first author is“ZHANG Weng-xiang”in the original article.The first author’s name has been corrected to“ZHANG Wen-xiang”.
基金Supported by National Natural Science Foundation of China(No.82271119)Shanghai Rising-Star Program(No.23QA1401000)+1 种基金Healthy Young Talents Project of Shanghai Municipal Health Commission(No.2022YQ015)Project of Shanghai Science and Technology(No.21Y11909800).
文摘Dear Editor,We report a case with trans-photorefractive keratectomy(PRK)for recurrent epithelial corneal erosion caused by cooking oil after EVO-implantable contact lens(ICL)(EVO Visian ICL;STAAR Surgical AG,Switzerland),which should be distinguished from postoperative complications of EVO-ICL.Most corneal burns are classified as chemical and thermal burns,referring to direct contact injury to the cornea.
文摘Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill slopes. A study was conducted using a sprinkler rainfall simulator and plot experiment to study soil erosion processes. Soil samples were collected from four farms in Gidan Kwanu, with varying moisture content. Sand content ranged from 46.0% to 76.20%, silt from 11.30% to 23.50%, and clay from 11.0% to 30.0%. Uncultivated and bare land had a higher average porosity (15.47% and 14.99%), while cultivated land had lower porosity (14.4%). The study found that most people in Gidan-Kwanu primarily practice farming, which is season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. The study concluded that farming practices in Gidan-Kwanu are primarily season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil.
基金supported by the Petrochina's “14th Five-Year plan” Project(2021DJ2804)Sichuan Natural Science Foundation(2023NSFSC0422)。
文摘During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%.
基金The authors extend their appreciation to Researchers Supporting Project number(RSP2024R390),King Saud University,Riyadh,Saudi Arabia.
文摘Soil erosion is a crucial geo-environmental hazard worldwide that affects water quality and agriculture,decreases reservoir storage capacity due to sedimentation,and increases the danger of flooding and landslides.Thus,this study uses geospatial modeling to produce soil erosion susceptibility maps(SESM)for the Hangu region,Khyber Pakhtunkhwa(KPK),Pakistan.The Hangu region,located in the Kohat Plateau of KPK,Pakistan,is particularly susceptible to soil erosion due to its unique geomorphological and climatic characteristics.Moreover,the Hangu region is characterized by a combination of steep slopes,variable rainfall patterns,diverse land use,and distinct soil types,all of which contribute to the complexity and severity of soil erosion processes.These factors necessitate a detailed and region-specific study to develop effective soil conservation strategies.In this research,we detected and mapped 1013 soil erosion points and prepared 12 predisposing factors(elevation,aspect,slope,Normalized Differentiate Vegetation Index(NDVI),drainage network,curvature,Land Use Land Cover(LULC),rainfall,lithology,contour,soil texture,and road network)of soil erosion using GIS platform.Additionally,GIS-based statistical models like the weight of evidence(WOE)and frequency ratio(FR)were applied to produce the SESM for the study area.The SESM was reclassified into four classes,i.e.,low,medium,high,and very high zone.The results of WOE for SESM show that 16.39%,33.02%,29.27%,and 21.30%of areas are covered by low,medium,high,and very high zones,respectively.In contrast,the FR results revealed that 16.50%,24.33%,35.55%,and 23.59%of the areas are occupied by low,medium,high,and very high classes.Furthermore,the reliability of applied models was evaluated using the Area Under Curve(AUC)technique.The validation results utilizing the area under curve showed that the success rate curve(SRC)and predicted rate curve(PRC)for WOE are 82%and 86%,respectively,while SRC and PRC for FR are 85%and 96%,respectively.The validation results revealed that the FR model performance is better and more reliable than the WOE.
基金supported by the Third Xinjiang Scientific Expedition and Research Program (Grant No. 2022xjkk0602)National Cryosphere Desert Data Center (No. 2021kf02)Xinjiang Jiaotou’s Unveiling and Commanding System Project in 2021 (ZKXFWCG 2022060004)。
文摘aSoil degradation caused by soil erosion is one of the world's most critical environmental issues.Soil erosion in the Tianshan Mountains has caused various environmental problems in the surrounding areas.This study used remote sensing data to analyze the distribution of the factors influencing soil erosion,and the revised universal soil loss equation(RUSLE)to calculate the total amount and distribution characteristics of soil erosion in the Tianshan Mountains in 2019.Due to the large error of RUSLE in soil erosion estimation in mountainous areas,this study modified RUSLE equation based on the characteristics of snow cover in the Tianshan Mountains.The results show that the average soil erosion was 1690.3 t/(km^(2)·year),of which insignificant erosion,slight erosion and moderate erosion accounted for 42,8%,22.4%and 9.9%,respectively.Severe erosion and above accounted for 13.3%.The accuracy of the soil erosion modulus calculated by the RUSLE was only 61.9%,with an average error of 1631.9 t/(km^(2)·year).The average error of the double-coefficient correction method was 1259.1 t/(km^(2)·year),and the average error of the modified formula method was reduced by 40.3%compared with the RUSLE,reaching 973.7 t/(km^(2)·year),and its accuracy reached 76.2%.Very severe erosion and catastrophic erosion are distributed on mountain ridges with higher elevation and on the northern area with higher precipitation.Snow cover has a certain inhibitory effect on soil erosion,and snow cover in alpine mountains is a factor that cannot be ignored in soil erosion research.
基金supported by the National Natural Science Foundation of China(41907047)the China Scholarship Council(202106515016)the Strategic International Collaboration of Scientific and Technological Innovation for the National Key Research and Development Plan(2016YFE0202900).
文摘The unique geomorphological features and farming methods in the Mollisol region of Northeast China increase water catchment flow and aggravate the erosion of ephemeral gully(EG).Vegetation suffers from rain erosion and damage during the growth stage,which brings serious problems to the restoration of grass in the early stage.Therefore,effects of coir geotextile and geocell on EG erosion under four confluence intensities were researched in this study.Results of the simulated water discharge erosion test showed that when the confluence strength was less than 30 L/min,geocell and coir geotextile had a good effect on controlling EG erosion,and sediment yield of geocell and coir geotextile was reduced by 25.95%–37.82%and 73.73%–88.96%,respectively.However,when confluence intensity increased to 40 L/min,protective effect of coir geotextile decreased,and sediment yield rate increased sharply by 189.03%.When confluence intensity increased to 50 L/min,the protective effect of coir geotextile was lost.On the other hand,geocell showed that the greater the flow rate,the better the protective effect.In addition,with the increase in confluence intensity,erosion pattern of coir geotextile developed from sheet erosion to intermittent fall and then to completion of main rill,and the protective effect was gradually weakened.In contrast,the protective effect of EG under geocell was gradually enhanced from the continuous rill to the intermittent rill and finally to the intermittent fall.This study shows that coir geotextile and geocell can prevent EG erosion,and the effect of geocell is better than that of coir geotextile on the surface of EG.
基金funded by the National Natural Science Foundation of China(Grant No.51578147)Fundamental Research Funds for the Central Universities(Grant No.2242020R20025)Ningxia Science and Technology Department(Grant No.2020BFG02014).
文摘In most coastal and estuarine areas,tides easily cause surface erosion and even slope failure,resulting in severe land losses,deterioration of coastal infrastructure,and increased floods.The bio-cementation technique has been previously demonstrated to effectively improve the erosion resistance of slopes.Seawater contains magnesium ions(Mg^(2+))with a higher concentration than calcium ions(Ca^(2+));therefore,Mg^(2+)and Ca^(2+)were used together for bio-cementation in this study at various Mg^(2+)/Ca^(2+)ratios as the microbially induced magnesium and calcium precipitation(MIMCP)treatment.Slope angles,surface strengths,precipitation contents,major phases,and microscopic characteristics of precipitation were used to evaluate the treatment effects.Results showed that the MIMCP treatment markedly enhanced the erosion resistance of slopes.Decreased Mg^(2+)/Ca^(2+)ratios resulted in a smaller change in angles and fewer soil losses,especially the Mg^(2+)concentration below 0.2 M.The decreased Mg^(2+)/Ca^(2+)ratio achieved increased precipitation contents,which contributed to better erosion resistance and higher surface strengths.Additionally,the production of aragonite would benefit from elevated Mg^(2+)concentrations and a higher Ca^(2+)concentration led to more nesquehonite in magnesium precipitation crystals.The slopes with an initial angle of 53°had worse erosion resistance than the slopes with an initial angle of 35°,but the Mg^(2+)/Ca^(2+)ratios of 0.2:0.8,0.1:0.9,and 0:1.0 were effective for both slope stabilization and erosion mitigation to a great extent.The results are of great significance for the application of MIMCP to improve erosion resistance of foreshore slopes and the MIMCP technique has promising application potential in marine engineering.
基金supported by the Sichuan Science and Technology Program (No. 2024NSFSC0867)National Natural Science Foundation of China (No. 52377157)。
文摘In this study, the mechanisms of the anode phenomena and anode erosion with various contact materials were investigated. Arc parameters were calculated, and the anode temperature was predicted with a transient self-consistent model. The simulation results predicted a constricted arc column and obvious anode phenomena in Cu–Cr alloy contacts than in W–Cu alloy contacts.This observation could be the reason for the concentrated anode erosion in Cu–Cr alloys. For the contacts made by pure tungsten(W) and W–Cu alloy, the anode temperature increased rapidly because of the low specific heat of W. However, the maximum energy flux from the arc column to the anode surface was lower than in other cases. The simulation results were compared with experimental results.
基金funded by the Natural Science Foundation of China (Grants No. 42171007)。
文摘Cape Stone Forest is a group of granite rock pillars(pedestal rocks) towering over Shilin Lake, on the southern shore of Shantou Bay in eastern Guangdong, China. The rock pillars were previously identified as sea stacks because they have marine notch-like concave sidewalls at their base, and more importantly, the lake is immediately adjacent to the bay, which is exposed to the open sea. However, rock pillars similar in shape and size can also be found at the top of Queshi Mountain, which is only about 300 meters northwest of the lake and about 85 meters above sea level. Therefore, the marine origin of Cape Stone Forest is seriously questioned. In this study, 3D imagery and drone technology were used to collect data in the investigations without direct manual measurements in the water or on the mountain. It shows that the concave sidewalls of the rock pillars in the lake and on the mountains occur at different heights and are exposed to different directions, while a natural sea stack on Mayu Island at the mouth of Shantou Bay has a horizontal notch parallel to the sea level, although the granite rock of the sea stack is the same as that of the lake and the mountains. The eastern side of the island, where the sea stack is located, is exposed to the open sea but blocks large waves for the rock pillars in the lake. Therefore, the origin of Cape Stone Forest cannot be explained by wave-based mechanisms. The only satisfactory explanation that takes into account all the field evidence is that the narrow rock pillars of the lake and mountain were formed by chemical weathering that penetrated closely the spaced joints of the granite rock, and the notch-like concave sidewalls were formed by more effective chemical weathering at the base of the pillars.
基金financially supported by the fellowship of the China Postdoctoral Science Foundation (2021M703466)the Natural Science Foundation of Gansu Province, China (20JR10RA231)the Natural Science Foundation of Gansu Province, China (22JR5RA050)。
文摘Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand.