人工势场法由于运算量小、精度高,广泛应用于无人车的局部路径规划。针对传统人工势场法存在目标不可达、局部最小值及陷入U型障碍物的问题,提出一种基于Frenet坐标系下改进人工势场法的路径规划算法。构建Frenet坐标系来表述车辆避障运...人工势场法由于运算量小、精度高,广泛应用于无人车的局部路径规划。针对传统人工势场法存在目标不可达、局部最小值及陷入U型障碍物的问题,提出一种基于Frenet坐标系下改进人工势场法的路径规划算法。构建Frenet坐标系来表述车辆避障运动,简化规划模型,解决路径规划中车辆与所在道路相对位置不易表述的问题。提出安全椭圆模型和预测距离的概念来调整势场影响区域,加入基于Frenet坐标系下的参考线势场及动态速度势场改进斥力场函数,解决车辆在静态和动态下的避障问题。利用数学仿真软件进行仿真,以不同车速在直道和弯道场景中对所提出的路径规划方法进行静态和动态避障仿真实验。研究结果表明:不同车速下的前轮转角、横摆角速度均控制在较小范围内,改进算法可以有效解决传统人工势场法的缺陷,同时与快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法相比,其在避障过程中路径规划计算效率提高了42.8%,改进算法优势明显。展开更多
文摘人工势场法由于运算量小、精度高,广泛应用于无人车的局部路径规划。针对传统人工势场法存在目标不可达、局部最小值及陷入U型障碍物的问题,提出一种基于Frenet坐标系下改进人工势场法的路径规划算法。构建Frenet坐标系来表述车辆避障运动,简化规划模型,解决路径规划中车辆与所在道路相对位置不易表述的问题。提出安全椭圆模型和预测距离的概念来调整势场影响区域,加入基于Frenet坐标系下的参考线势场及动态速度势场改进斥力场函数,解决车辆在静态和动态下的避障问题。利用数学仿真软件进行仿真,以不同车速在直道和弯道场景中对所提出的路径规划方法进行静态和动态避障仿真实验。研究结果表明:不同车速下的前轮转角、横摆角速度均控制在较小范围内,改进算法可以有效解决传统人工势场法的缺陷,同时与快速搜索随机树(Rapidly-exploring Random Tree,RRT)算法相比,其在避障过程中路径规划计算效率提高了42.8%,改进算法优势明显。