期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
空间弯管仿真与回弹补偿 被引量:6
1
作者 熊威 甘忠 《中国机械工程》 EI CAS CSCD 北大核心 2013年第23期3249-3254,共6页
回弹是空间弯管成形的主要成形缺陷。为了预测和补偿空间弯管成形中的回弹,通过编写用户幅值子程序(UAMP),将有限元法应用于空间弯管的成形和回弹分析,提出了一种从仿真结果中提取管材中心线的方法。通过圆柱螺线形弯管成形的仿真计算,... 回弹是空间弯管成形的主要成形缺陷。为了预测和补偿空间弯管成形中的回弹,通过编写用户幅值子程序(UAMP),将有限元法应用于空间弯管的成形和回弹分析,提出了一种从仿真结果中提取管材中心线的方法。通过圆柱螺线形弯管成形的仿真计算,建立了管材回弹前后中心轴线曲率、挠率的关系。提出了一种基于求解曲线基本方程的空间弯管模具型面补偿方法,论述了曲线几何补偿的数学依据。通过对曲率和挠率(均为非常值)曲线进行补偿计算和成形仿真,对该方法进行了验证。结果表明该方法能够有效补偿回弹误差,保证弯管精度。 展开更多
关键词 空间弯管 回弹 中心线 frenet—Serret方程
下载PDF
Symplectic invariants for curves and integrable systems in similarity symplectic geometry 被引量:2
2
作者 LI YanYan QU ChangZheng 《Science China Mathematics》 SCIE CSCD 2015年第7期1415-1432,共18页
In this paper, similarity symplectic geometry for curves is proposed and studied. Explicit expressions of the symplectic invariants, Frenet frame and Prenet formulae for curves in similarity symplectic geometry are ob... In this paper, similarity symplectic geometry for curves is proposed and studied. Explicit expressions of the symplectic invariants, Frenet frame and Prenet formulae for curves in similarity symplectic geometry are obtained by using the equivariant moving frame method. The relationships between the Euclidean symplectic invariants, Frenet frame, Frenet formulae and the similarity symplectic invariants, Frenet frame, Frenet formulae for curves are established. Invariant curve flows in four-dimensional similarity symplectic geometry are also studied. It is shown that certain intrinsic invariant curve flows in four-dimensional similarity symplectic geometry are related to the integrable Burgers and matrix Burgers equations. 展开更多
关键词 similarity symplectic geometry integrable system symplectic invariant moving frame method matrix Burgers equation
原文传递
ON THE RECOVERY OF A CURVE ISOMETRICALLY IMMERSED IN E^n
3
作者 M.SZOPOS 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2004年第4期507-522,共16页
It is known from classical differential geometry that one can reconstruct a curve with (n - 1) prescribed curvature functions, if these functions can be differentiated a certain number of times in the usual sense and ... It is known from classical differential geometry that one can reconstruct a curve with (n - 1) prescribed curvature functions, if these functions can be differentiated a certain number of times in the usual sense and if the first (n - 2) functions are strictly positive. It is established here that this result still holds under the assumption that the curvature functions belong to some Sobolev spaces, by using the notion of derivative in the distributional sense. It is also shown that the mapping which associates with such prescribed curvature functions the reconstructed curve is of class C∞. 展开更多
关键词 Differential geometry Nonlinear elasticity Curves in Euclidean space frenet equations Weak derivatives
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部