A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow...A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.展开更多
This study investigated the vibration frequency in micro-vibration therapy (MVT) performed as a part of nursing care in Japan. We surveyed 31 nurses (25 women and 6 men) who performed MVT with accelerometers attached ...This study investigated the vibration frequency in micro-vibration therapy (MVT) performed as a part of nursing care in Japan. We surveyed 31 nurses (25 women and 6 men) who performed MVT with accelerometers attached to the backs of their hands, and the data obtained were analyzed. The mean vibration frequency was 8.3 Hz (standard deviation [SD]: 1.9 Hz) bilaterally, with a left-right difference of 0.8 Hz (SD: 1.1 Hz, right > left). Furthermore, vibration frequency was correlated with duration of MVT use (rs = 0.5, P < 0.01). The vibration frequency was higher in men (9.2 Hz, SD: 2.4 Hz) than in women (8.1 Hz, SD: 1.8 Hz), but this difference was not significant (P = 0.34). The vibrations of MVT are of a lower frequency than those of other vibration therapies.展开更多
This poper presents an approximate solution for calculating eigen-frequencies of transverse vibration of rectangular plates elastically restrained against rotation along edges. The formulae are not only very simple an...This poper presents an approximate solution for calculating eigen-frequencies of transverse vibration of rectangular plates elastically restrained against rotation along edges. The formulae are not only very simple and easily programmed but also have high accuracy. Finally, some numerical results are given and compared with other results obtained.展开更多
In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF a...In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF and phase shift time were calculated by using the TMF contact model and the large phase shift of the magnetic field at a higher frequency was conductive to the dispersion process of residual plasma. The arc velocity was higher at 800 Hz than at 400 Hz. It can be inferred that TMF will encourage arc movement at 800 Hz. Moreover, the arc movement has an impact on the arc voltage. Because of the increasing length of the arc column with a high arc velocity, the elongated arc causes the arc voltage to increase. Specifically, the volt-ampere characteristics of the vacuum arc are divided into three stages in this paper. The higher the frequency, the greater the initial rate of rise in the arc voltage and the larger the area surrounded by arc volt-ampere characteristics. The correlations between the arc voltage and the amplitude and frequency of the current are also presented.展开更多
Arc motion and splitting of vacuum arc at intermediate frequency(400-800 Hz) were investigated under transverse magnetic field(TMF).The experiment was performed on cup-type TMF contacts with contact diameter of 40...Arc motion and splitting of vacuum arc at intermediate frequency(400-800 Hz) were investigated under transverse magnetic field(TMF).The experiment was performed on cup-type TMF contacts with contact diameter of 40 mm and a contact gap of 4 mm in a single-frequency circuit.With high-speed photography we characterized the arc appearance at different arc currents from 3.3 kA-rms to 10 kA-rms at intermediate frequencies.As arc current increases from3.3 kA-rms to 10 kA-rms the arc appearance changes obviously.When current value is 3.3 kArms(current frequency 400-800 Hz),there is almost no splitting arc;when the current exceeds5 kA-rms(current frequency 400-800 Hz),the arc rotates at a speed above 20 m/s,accompanied by an observable splitting arc.The splitting arc could be observed at different frequencies and the arc-voltage had no noises when splitting occurred.The motion direction and the velocity of arc column were studied.Finally,the formation of a split arc was discussed.展开更多
The aim of this paper is to study the effects of rotation and magnetic field on the plane vibrations in a transversely isotropic material of an infinite hollow cylinder.The natural frequency of the plane vibrations in...The aim of this paper is to study the effects of rotation and magnetic field on the plane vibrations in a transversely isotropic material of an infinite hollow cylinder.The natural frequency of the plane vibrations in the case of harmonic vibrations has been obtained.The natural frequencies are calculated numerically and the effects of rotation and magnetic field are discussed.The numerical results obtained have been illustrated graphically to understand the behavior of frequency equation with different values of frequencyωunder effects the rotation and magnetic field.Comparison was made with the results obtained in the presence and absence of the rotation and magnetic field.The results indicate that the effect of rotation and magnetic field are very pronounced.展开更多
This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal direc...This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975059 and 12005021)。
文摘A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
文摘This study investigated the vibration frequency in micro-vibration therapy (MVT) performed as a part of nursing care in Japan. We surveyed 31 nurses (25 women and 6 men) who performed MVT with accelerometers attached to the backs of their hands, and the data obtained were analyzed. The mean vibration frequency was 8.3 Hz (standard deviation [SD]: 1.9 Hz) bilaterally, with a left-right difference of 0.8 Hz (SD: 1.1 Hz, right > left). Furthermore, vibration frequency was correlated with duration of MVT use (rs = 0.5, P < 0.01). The vibration frequency was higher in men (9.2 Hz, SD: 2.4 Hz) than in women (8.1 Hz, SD: 1.8 Hz), but this difference was not significant (P = 0.34). The vibrations of MVT are of a lower frequency than those of other vibration therapies.
文摘This poper presents an approximate solution for calculating eigen-frequencies of transverse vibration of rectangular plates elastically restrained against rotation along edges. The formulae are not only very simple and easily programmed but also have high accuracy. Finally, some numerical results are given and compared with other results obtained.
基金supported by Special Scientific and Research Funds for Doctoral Specialty of Institution of Higher Learning (200800060004)National Natural Science Foundation of China (No. 51177004)by the Innovation foundation of BUAA for Ph.D Graduates
文摘In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF and phase shift time were calculated by using the TMF contact model and the large phase shift of the magnetic field at a higher frequency was conductive to the dispersion process of residual plasma. The arc velocity was higher at 800 Hz than at 400 Hz. It can be inferred that TMF will encourage arc movement at 800 Hz. Moreover, the arc movement has an impact on the arc voltage. Because of the increasing length of the arc column with a high arc velocity, the elongated arc causes the arc voltage to increase. Specifically, the volt-ampere characteristics of the vacuum arc are divided into three stages in this paper. The higher the frequency, the greater the initial rate of rise in the arc voltage and the larger the area surrounded by arc volt-ampere characteristics. The correlations between the arc voltage and the amplitude and frequency of the current are also presented.
基金supported by Special Scientific and Research Funds for Doctoral Specialty of Institution of Higher Learning of China(No.200800060004)National Natural Science Foundation of China(No.50877002)the Innovation Foundation of BUAA for Ph.D Graduates of China
文摘Arc motion and splitting of vacuum arc at intermediate frequency(400-800 Hz) were investigated under transverse magnetic field(TMF).The experiment was performed on cup-type TMF contacts with contact diameter of 40 mm and a contact gap of 4 mm in a single-frequency circuit.With high-speed photography we characterized the arc appearance at different arc currents from 3.3 kA-rms to 10 kA-rms at intermediate frequencies.As arc current increases from3.3 kA-rms to 10 kA-rms the arc appearance changes obviously.When current value is 3.3 kArms(current frequency 400-800 Hz),there is almost no splitting arc;when the current exceeds5 kA-rms(current frequency 400-800 Hz),the arc rotates at a speed above 20 m/s,accompanied by an observable splitting arc.The splitting arc could be observed at different frequencies and the arc-voltage had no noises when splitting occurred.The motion direction and the velocity of arc column were studied.Finally,the formation of a split arc was discussed.
文摘The aim of this paper is to study the effects of rotation and magnetic field on the plane vibrations in a transversely isotropic material of an infinite hollow cylinder.The natural frequency of the plane vibrations in the case of harmonic vibrations has been obtained.The natural frequencies are calculated numerically and the effects of rotation and magnetic field are discussed.The numerical results obtained have been illustrated graphically to understand the behavior of frequency equation with different values of frequencyωunder effects the rotation and magnetic field.Comparison was made with the results obtained in the presence and absence of the rotation and magnetic field.The results indicate that the effect of rotation and magnetic field are very pronounced.
文摘This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.