Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small...Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.展开更多
This paper proposes a systematic design method of overlap frequency domain equalization(FDE) for single carrier (SC) transmission without a guard interval (GI).Based on the analysis of signal-to-interference-plus-nois...This paper proposes a systematic design method of overlap frequency domain equalization(FDE) for single carrier (SC) transmission without a guard interval (GI).Based on the analysis of signal-to-interference-plus-noise ratio (SINR) of the equalizer output for each symbol,the authors adaptivelydetermine the block of the overlap FDE,where the block is defined as a set of symbols at the equalizeroutput with sufficiently low error rate,for a certain fixed sliding window size,which corresponds toa fast Fourier transform (FFT) window size.The proposed method takes advantage of the fact thatthe utility part of the equalized signal is localized around the center of the FFT window.In addition,the authors also propose to adjust the block size in order to control the computational complexity ofthe equalization per processed sample associating with the average bit error rate (BER) of the system.Simulation results show that the proposed scheme can achieve comparable BER performance to theconventional SC-FDE scheme with sufficient GI insertion for both the coded and uncoded cases withvarious modulation levels,while requiring lower computational complexity compared to the SC overlapFDE transmission with the fixed block.展开更多
A low complex minimum mean-square error frequency-domain decision feedback (MMSE-FDDF) equalization algorithm is proposed in this paper for the single-carrier V-BLAST systems. Exploiting the factor that the discrete...A low complex minimum mean-square error frequency-domain decision feedback (MMSE-FDDF) equalization algorithm is proposed in this paper for the single-carrier V-BLAST systems. Exploiting the factor that the discrete Fourier transform (DFT) is unitary, the proposed receiver can equalize the signals by the MMSE detecting to the spectrums in the frequency domain instead of the waveforms in the time domain. In order to obtain the right decisions, the detector must be able to equalize the overall spectrum with regard to each layer. This work can be performed very efficiently since the system matrix has been designed as a special block-circulant-block matrix. Similar to other V-BLAST-like systems, the detecting order has strong impact on the performance of MMSE-FDDF. Therefore, we further give a fast optimally sorting scheme for the MMSE-FDDF architecture. By using the newly constructed matrix, the coefficients computation and the sorting can be combined into one process, and then we employ the modified Gram-Schmidt (MGS) to simplify the process. The simulation results and the computational complexity analysis show that the proposed MMSE-FDDF has better tradeoff between the performance and the complexity than the existing algorithms. In addition, MMSE-FDDF can avoid the performance floor caused by the overlap-and-save technique in the severe dispersive channel.展开更多
Recently, single carrier block transmission(SCBT) has received much attention in high-rate phase-coherent underwater acoustic communication.However,minimum-mean-square-error(MMSE) linear FDE may suffer performance los...Recently, single carrier block transmission(SCBT) has received much attention in high-rate phase-coherent underwater acoustic communication.However,minimum-mean-square-error(MMSE) linear FDE may suffer performance loss in the severely time dispersive underwater acoustic channel. To combat the channel distortion, a novel multi-channel receiver with maximum ratio combining and a low complex T/4 fractional iterative frequency domain equalization(FDE) is investigated to improve diversity gain and the bit error rate(BER) performance. The proposed method has been verified by the real data from a lake underwater acoustic communication test in November 2011. At 1.8 km, the useful data rates are around 1500 and 3000 bits/s for BPSK and QPSK respectively. The results show the improvements of system performance. Compared with MMSE FDE system, the output SNR improvement is 6.9 d B, and the BER is from 10-3 to no error bits for BPSK. The output SNR improvement is 5.3 d B, and the BER is from 1.91×10-2 to 2.2×10-4for QPSK.展开更多
Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a...Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.展开更多
Discrete Fourier transform-spread generalized multi-carrier (DFT-S-GMC) based single carrier-frequency division multiple access (SC-FDMA) scheme is a promising solution for uplink transmission of broadband wireles...Discrete Fourier transform-spread generalized multi-carrier (DFT-S-GMC) based single carrier-frequency division multiple access (SC-FDMA) scheme is a promising solution for uplink transmission of broadband wireless communication. In this paper, the impact of non-perfect orthogonal prototype filter to the performance of the DFT-S-GMC system is discussed. Single sub-band frequency-domain equalization (FDE) method is presented and the performance loss caused by FDE-tone discarding is analyzed. Moreover, the post-processing signal to interference plus noise ratio (SINR) of DFT-S-GMC receiver over multi-path channel is addressed. The theoretical analysis illustrates that the non-perfect orthogonal prototype filter results in inter-symbol interference (ISI) and inter-sub-band interference (IBI), and the variance of the ISI is still less than le-4 and much larger than that of IBI. By designing proper system parameters, the reconstruction error due to FDE-tones discarding can be controlled under -40 dB; the post-processing SINR of the DFT-S-GMC receiver with minimum mean square error (MMSE) equalization is higher than that with zero forcing (ZF) equalization. The theoretical performances are verified by extensive simulation results.展开更多
文摘Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.
基金supported in part by Grant-in-Aid for Scientific Research No. 21760289 from the Ministry of Education, Science, Sport and Culture of Japanby the KMRC R&D Grant for Mobile Wireless from Kinki Mobile Radio Center, Foundation, Japan
文摘This paper proposes a systematic design method of overlap frequency domain equalization(FDE) for single carrier (SC) transmission without a guard interval (GI).Based on the analysis of signal-to-interference-plus-noise ratio (SINR) of the equalizer output for each symbol,the authors adaptivelydetermine the block of the overlap FDE,where the block is defined as a set of symbols at the equalizeroutput with sufficiently low error rate,for a certain fixed sliding window size,which corresponds toa fast Fourier transform (FFT) window size.The proposed method takes advantage of the fact thatthe utility part of the equalized signal is localized around the center of the FFT window.In addition,the authors also propose to adjust the block size in order to control the computational complexity ofthe equalization per processed sample associating with the average bit error rate (BER) of the system.Simulation results show that the proposed scheme can achieve comparable BER performance to theconventional SC-FDE scheme with sufficient GI insertion for both the coded and uncoded cases withvarious modulation levels,while requiring lower computational complexity compared to the SC overlapFDE transmission with the fixed block.
基金Supported partially by the National Natural Science Foundation of China (Grant Nos. 60572046, 60502022, 60772095)the National High-TechResearch and Development Program of China ("863" Program)(Grant No. 2006AA01Z220)
文摘A low complex minimum mean-square error frequency-domain decision feedback (MMSE-FDDF) equalization algorithm is proposed in this paper for the single-carrier V-BLAST systems. Exploiting the factor that the discrete Fourier transform (DFT) is unitary, the proposed receiver can equalize the signals by the MMSE detecting to the spectrums in the frequency domain instead of the waveforms in the time domain. In order to obtain the right decisions, the detector must be able to equalize the overall spectrum with regard to each layer. This work can be performed very efficiently since the system matrix has been designed as a special block-circulant-block matrix. Similar to other V-BLAST-like systems, the detecting order has strong impact on the performance of MMSE-FDDF. Therefore, we further give a fast optimally sorting scheme for the MMSE-FDDF architecture. By using the newly constructed matrix, the coefficients computation and the sorting can be combined into one process, and then we employ the modified Gram-Schmidt (MGS) to simplify the process. The simulation results and the computational complexity analysis show that the proposed MMSE-FDDF has better tradeoff between the performance and the complexity than the existing algorithms. In addition, MMSE-FDDF can avoid the performance floor caused by the overlap-and-save technique in the severe dispersive channel.
基金supported in part by National Natural Science Foundation of China under Grants No.61471298 and 61101102Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2015JM6297)
文摘Recently, single carrier block transmission(SCBT) has received much attention in high-rate phase-coherent underwater acoustic communication.However,minimum-mean-square-error(MMSE) linear FDE may suffer performance loss in the severely time dispersive underwater acoustic channel. To combat the channel distortion, a novel multi-channel receiver with maximum ratio combining and a low complex T/4 fractional iterative frequency domain equalization(FDE) is investigated to improve diversity gain and the bit error rate(BER) performance. The proposed method has been verified by the real data from a lake underwater acoustic communication test in November 2011. At 1.8 km, the useful data rates are around 1500 and 3000 bits/s for BPSK and QPSK respectively. The results show the improvements of system performance. Compared with MMSE FDE system, the output SNR improvement is 6.9 d B, and the BER is from 10-3 to no error bits for BPSK. The output SNR improvement is 5.3 d B, and the BER is from 1.91×10-2 to 2.2×10-4for QPSK.
基金support by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAK05B01)
文摘Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.
基金Supported by the National High-Tech Research & Development Program of China (Grant No. 2006AA01Z280)the National Key Project of China during the 11th Five-Year Plan Period (Grant No. 2009ZX03003-006-03)
文摘Discrete Fourier transform-spread generalized multi-carrier (DFT-S-GMC) based single carrier-frequency division multiple access (SC-FDMA) scheme is a promising solution for uplink transmission of broadband wireless communication. In this paper, the impact of non-perfect orthogonal prototype filter to the performance of the DFT-S-GMC system is discussed. Single sub-band frequency-domain equalization (FDE) method is presented and the performance loss caused by FDE-tone discarding is analyzed. Moreover, the post-processing signal to interference plus noise ratio (SINR) of DFT-S-GMC receiver over multi-path channel is addressed. The theoretical analysis illustrates that the non-perfect orthogonal prototype filter results in inter-symbol interference (ISI) and inter-sub-band interference (IBI), and the variance of the ISI is still less than le-4 and much larger than that of IBI. By designing proper system parameters, the reconstruction error due to FDE-tones discarding can be controlled under -40 dB; the post-processing SINR of the DFT-S-GMC receiver with minimum mean square error (MMSE) equalization is higher than that with zero forcing (ZF) equalization. The theoretical performances are verified by extensive simulation results.