A flextensional transducer with an Omega shape and its algorithmic method of the resonant frequency and the shape functions are suggested. The Omega transducer is separated into four parts treated respectively as a th...A flextensional transducer with an Omega shape and its algorithmic method of the resonant frequency and the shape functions are suggested. The Omega transducer is separated into four parts treated respectively as a thin shell of revolution and the theories of thin shells of revolution and piezoelectricity are used to obtain the energy functional of each part so that the sum of the energy functionals of the four parts is the energy functional of the whole Omega transducer. By substituting the shape functions with undetermined coefi3cients and the geo- metrical boundary conditions into the energy functional of the Omega transducer, the resonant frequency of the Omega transducer is firstly determined with the Rayleigh-Ritz method. With the gotten resonant frequency, the constant coefficients of the shape functions are following solved through the Rayleigh-Ritz partial differential equations and the geometrical boundary condition equations. The solving method of the resonant frequency and the shape functions is also extended to the cymbal transducer. Such an analytical method is verified to be feasible by the results of the finite element analysis and experiments. The research indicates that (1) The radial vibration of the piezoelectric ceramic is in phase with the longitudinal vibration of the top of metal cap, and it cut down the reversed phase component in the sound field. The Omega transducer can be a low frequency transducer. (2) The determination method of the resonant frequency and the shape functions give a solution to the optimum designs of the Omega transducer and the cymbal transducer. (3) The determination method of the resonant fi'equency and the shape functions can also be used in other flextensional transducers or other structures which are composed of thin shells of revolution, so it is universal.展开更多
Ultrasound hyperthermia is one of the most important methods in tumor treatment and characterized by non-invasiveness. Magnetic resonance imaging(MRI)-based temperature mapping techniques are safe compared with invasi...Ultrasound hyperthermia is one of the most important methods in tumor treatment and characterized by non-invasiveness. Magnetic resonance imaging(MRI)-based temperature mapping techniques are safe compared with invasive methods and have been applied to detect temperature changes for a variety of applications. Among these techniques, the proton resonance frequency(PRF) method is relatively advanced. With a temperature measuring experiment, the effectiveness of PRF method has been proved, because the outcome temperature curve and the real temperature curve fit well. After that, an experiment has been conducted on tumors inside rabbit legs and the result indicates that this system is able to performance hyperthermia at targets based on PRF method in temperature mapping.展开更多
基金supported by the Young Scientists Ftmd of the National Natural Science Foundation of China(51005241)the Postdoctoral Science and Technology Activities Preferred Financing Project in Hubei Province
文摘A flextensional transducer with an Omega shape and its algorithmic method of the resonant frequency and the shape functions are suggested. The Omega transducer is separated into four parts treated respectively as a thin shell of revolution and the theories of thin shells of revolution and piezoelectricity are used to obtain the energy functional of each part so that the sum of the energy functionals of the four parts is the energy functional of the whole Omega transducer. By substituting the shape functions with undetermined coefi3cients and the geo- metrical boundary conditions into the energy functional of the Omega transducer, the resonant frequency of the Omega transducer is firstly determined with the Rayleigh-Ritz method. With the gotten resonant frequency, the constant coefficients of the shape functions are following solved through the Rayleigh-Ritz partial differential equations and the geometrical boundary condition equations. The solving method of the resonant frequency and the shape functions is also extended to the cymbal transducer. Such an analytical method is verified to be feasible by the results of the finite element analysis and experiments. The research indicates that (1) The radial vibration of the piezoelectric ceramic is in phase with the longitudinal vibration of the top of metal cap, and it cut down the reversed phase component in the sound field. The Omega transducer can be a low frequency transducer. (2) The determination method of the resonant frequency and the shape functions give a solution to the optimum designs of the Omega transducer and the cymbal transducer. (3) The determination method of the resonant fi'equency and the shape functions can also be used in other flextensional transducers or other structures which are composed of thin shells of revolution, so it is universal.
基金the National Natural Science Foundation of China(No.30800246)the Shanghai Key Technologies R&D Program of China(No.09441900500)the Research Program of Shanghai Education Commission(No.14CXY05)
文摘Ultrasound hyperthermia is one of the most important methods in tumor treatment and characterized by non-invasiveness. Magnetic resonance imaging(MRI)-based temperature mapping techniques are safe compared with invasive methods and have been applied to detect temperature changes for a variety of applications. Among these techniques, the proton resonance frequency(PRF) method is relatively advanced. With a temperature measuring experiment, the effectiveness of PRF method has been proved, because the outcome temperature curve and the real temperature curve fit well. After that, an experiment has been conducted on tumors inside rabbit legs and the result indicates that this system is able to performance hyperthermia at targets based on PRF method in temperature mapping.