Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in stu...Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.展开更多
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
Aim To derive the error formulae for the algorithm of frequency response computation. Methods This algorithm was introduced theoretically, the error sources of the algorithm were analyzed and the formulae of the mai...Aim To derive the error formulae for the algorithm of frequency response computation. Methods This algorithm was introduced theoretically, the error sources of the algorithm were analyzed and the formulae of the main error were derived. Results The repeatability and stability of the processing results of the algorithm are better than those measured by 1250 Frequency Analysor. Conclusion The error formulae derived are theoretically right and practically valid.展开更多
Based on an investigation of existing methods for estimating fre- quency response functions(FRF)at home and abroad,two methods are ad- vanced.The one,denoted as H_(12),avoids underestimates at resonances and overestim...Based on an investigation of existing methods for estimating fre- quency response functions(FRF)at home and abroad,two methods are ad- vanced.The one,denoted as H_(12),avoids underestimates at resonances and overestimates at antiresonances,while the other,denoted as H_F,regards the noise ratio of output to input as varying with the frequency.Finally,a soft- ware for estimating frequency response functions is introduced.A modal test for a steel plate excited with a random signal is made,and frequency response function estimates are made,making use of the above software.The test re- sults conform well with the theoretical analysis.展开更多
In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that se...In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that separately design the proposed method takes all the desired designing modes into consideration when designing all the subfilters. First an initial solution is obtained by separately designing the subfilters and then the initial solution is updated by iteratively solving a SOCP problem. The proposed method is evaluated on a design example and simulation results demonstrate that jointly designing all the subfilters can obtain significantly lower minimax approximation errors compared to the conventional design method.展开更多
This paper proposes an autopilot system that can be used to control the small scale rotorcraft during the flight test for linear-frequency-domain system identification. The input frequency-sweep is generated automatic...This paper proposes an autopilot system that can be used to control the small scale rotorcraft during the flight test for linear-frequency-domain system identification. The input frequency-sweep is generated automatically as part of the autopilot control command. Therefore the bandwidth coverage and consistency of the frequency-sweep are guaranteed to produce high quality data for system identification. Beside that, we can set the safety parameters during the flight test (maximum roll/pitch value, minimum altitude, etc.) so the safety of the whole flight test is guaranteed. This autopilot system is validated using hardware in the loop simulator for hover flight condition.展开更多
This paper presents the effects of surface finish and treatment on the high cycle fatigue behaviour of vibrating cylinder block of a new two-stroke free piston engine at complex variable amplitude loading conditions u...This paper presents the effects of surface finish and treatment on the high cycle fatigue behaviour of vibrating cylinder block of a new two-stroke free piston engine at complex variable amplitude loading conditions using frequency response approach. Finite element modelling and frequency response analysis was conducted using finite element analysis software Package MSC.PATRAN/MSC.NASTRAN and fatigue life prediction was carded out using MSC.FATIGUE software. Based on the finite element results, different frequency response approach was applied to predict the cylinder block fatigue life. Results for different load histories and material combinations are also discussed. Results indicated great effects for all surface finish and treatment. It is concluded that polished and cast surface finish conditions give the highest and lowest cylinder block lives, respectively; and that Nitrided treatment leads to longest cylinder block life. The results were used to draw contour plots of fatigue life and damage in the worst or most damaging case.展开更多
Ultra-wideband(UWB)technology is a prospective technology for high-rate transmission and accurate localization in the future communication systems.State-of-art channel modeling approaches usually divide the UWB channe...Ultra-wideband(UWB)technology is a prospective technology for high-rate transmission and accurate localization in the future communication systems.State-of-art channel modeling approaches usually divide the UWB channel into several sub-band channels and model them independently.By considering frequency-dependent channel parameters,a novel analytical UWB channel model with continuous frequency response is proposed.The composite effect of all frequency components within the UWB channel on the channel impulse response(CIR)of delay domain is derived based on the continuous channel transfer function(CTF)of frequency domain.On this basis,a closed-form simulation model for UWB channels and geometry-based parameter calculation method are developed,which can guarantee the continuity of channel characteristics on the frequency domain and greatly reduce the simulation complexity.Finally,the proposed method is applied to generate UWB channel with 2 GHz bandwidth at sub-6GHz and millimeter wave(mmWave)bands,respectively.The channel measurements are also carried out to validate the proposed method.The simulated CIR and power gain are shown to be in good agreement with the measurement data.Moreover,the comparison results of power gain and Doppler power spectral density(DPSD)show that the proposed UWB channel model Received:Apr.23,2022 Revised:Jun.09,2022 Editor:Wei Fan achieves a good balance between the simulation accuracy and efficiency.展开更多
Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables,...Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete flame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.展开更多
Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to...Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.展开更多
Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterat...Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .展开更多
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore struct...Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.展开更多
As renewable energy resources increasingly penetrate the electric grid,the inertia capability of power systems has become a developmental bottleneck.Nevertheless,the importance of primary frequency response(PFR)when m...As renewable energy resources increasingly penetrate the electric grid,the inertia capability of power systems has become a developmental bottleneck.Nevertheless,the importance of primary frequency response(PFR)when making generation-expansion plans has been largely ignored.In this paper,we propose an optimal generation-expansion planning framework for wind and thermal power plants that takes PFR into account.The model is based on the frequency equivalent model.It includes investment,startup/shutdown,and typical operating costs for both thermal and renewable generators.The linearization constraints of PFR are derived theoretically.Case studies based on the modified IEEE 39-bus system demonstrate the efficiency and effectiveness of the proposed method.Compared with methods that ignore PFR,the method proposed in this paper can effectively reduce the cost of the entire planning and operation cycle,improving the accommodation rate of renewable energy.展开更多
With consideration of the modulation frequency of the input lightwave itself, we present a new model to calculate the quantum efficiency of RCE p-i-n photodetectors (PD) by superimposition of multiple reflected ligh...With consideration of the modulation frequency of the input lightwave itself, we present a new model to calculate the quantum efficiency of RCE p-i-n photodetectors (PD) by superimposition of multiple reflected lightwaves. For the first time, the optical delay, another important factor limiting the electrical bandwidth of RCE p-i-n PD excluding the transit time of the carriers and RCd response of the photodetector, is analyzed and discussed in detail. The optical delay dominates the bandwidth of RCE p-i-n PD when its active layer is thinner than several 10 nm. These three limiting factors must be considered exactly for design of ultra-high-speed RCE p-i-n PD.展开更多
The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based r...The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based resources is an important mitigation option for maintaining grid security under the conditions of low inertia and insufficient primary frequency response capability. However, the understanding and technical characteristics of the FFR of inverter-based resources are still unclear. Aiming at solving the aforementioned problems, this paper proposes a definition for FFR based on the impact mechanism of FFR on system frequency. The performance requirements of FFR are clarified. Then, the effects of FFR on system frequency characteristics are further analyzed based on steady-state frequency deviation, the initial rate of change of frequency, and the maximum transient frequency deviation. Finally, the system requirements for FFR and its application effects are verified by simulating an actual bulk power grid, providing technical support for subsequent engineering application.展开更多
The frequency responses of a langasite crystal microbalance (LCM) in liquid phase were investigated. It was shown that the LCM possessed much stronger oscillating ability in liquid phase than that of the commonly us...The frequency responses of a langasite crystal microbalance (LCM) in liquid phase were investigated. It was shown that the LCM possessed much stronger oscillating ability in liquid phase than that of the commonly used quartz crystal microbalance (QCM). The frequency shifts of the LCM to the changes in mass loading, as well as viscosity and density of the liquid were measured. The LCM was applied to monitor the adsorption process of an ionic liquid film to ethanol vapor.展开更多
An analytic solution derived by multisection model to the small-signal frequency response (SSFR) of wavelength conversion based on cross-gain modulation (XGM) in semiconductor optical amplifiers (SOAs) is presen...An analytic solution derived by multisection model to the small-signal frequency response (SSFR) of wavelength conversion based on cross-gain modulation (XGM) in semiconductor optical amplifiers (SOAs) is presented. The result contains details that can affect the characteristics of SSFR significantly more than previous ones.展开更多
It has been proposed previously that the coherent detection of a terahertz(THz) pulse can be achieved based on the time-resolved luminescence quenching. In this paper, we investigate the frequency response range of ...It has been proposed previously that the coherent detection of a terahertz(THz) pulse can be achieved based on the time-resolved luminescence quenching. In this paper, we investigate the frequency response range of this novel detection technology by simulating the motion of carriers in gallium arsenide(GaAs) by the ensemble Monte Carlo method. At room temperature, for a direct-current(DC) voltage of 20 kV/cm applied to the semiconductor(GaAs) and sampling time o140 fs, the luminescence quenching phenomena induced by terahertz pulses with different center frequencies are studied The results show that the quenching efficiency is independent of the THz frequency when the frequency is in a range o0.1 THz–4 THz. However, when the frequency exceeds 4 THz, the efficiency decreases with the increase of frequency Therefore, the frequency response range is 0.1 THz–4 THz. Moreover, when the sampling time is changed to 100 fs the frequency response range is extended to be approximately 0.1 THz–5.6 THz. This study of the frequency-dependen characteristics of the luminescence response to the THz pulse can provide a theoretical basis for the exploration of THz detection technology.展开更多
In this paper, a new numerical simulation approach is proposed for the study of open-loop frequency response of a chaotic masking system. Using Chua's circuit and the Lorenz system as illustrative examples, we have s...In this paper, a new numerical simulation approach is proposed for the study of open-loop frequency response of a chaotic masking system. Using Chua's circuit and the Lorenz system as illustrative examples, we have shown that one can employ chaos synchronization to separate the feedback network from a chaotic masking system, and then use numerical simulation to obtain the open-loop synchronization response, the phase response, and the amplitude response of a chaotic masking system. Based on the analysis of the frequency response, we have also proved that changing the amplitude of the exciting (input) signal within normal working domain does not influence the frequency response of the chaotic masking system. The new numerical simulation method developed in this paper can be extended to consider the open-loop frequency response of other systems described by differential or difference equations.展开更多
The giant electrorheological (ER) fluid is based on the principle of a polar molecule dominated electrorheological (PM-ER) effect. The response of the shear stress for PM-ER fluid in alternate electric fields with...The giant electrorheological (ER) fluid is based on the principle of a polar molecule dominated electrorheological (PM-ER) effect. The response of the shear stress for PM-ER fluid in alternate electric fields with triangle/square wave forms for different frequencies has been studied. The results show that the shear stress cannot well follow the rapid change of electric field and the average shear stresses of PM-ER fluids decrease with the increasing frequency of the applied field due to the response decay of the shear stress on applied field. The behavior is quite different from that of traditional ER fluids. However, the average shear stress of PM-ER fluid in a square wave electric field of iE at low frequency can keep at high value. The obtained knowledge must be helpful for the design and operation of PM-ER fluids in the applications.展开更多
基金financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.
文摘Aim To derive the error formulae for the algorithm of frequency response computation. Methods This algorithm was introduced theoretically, the error sources of the algorithm were analyzed and the formulae of the main error were derived. Results The repeatability and stability of the processing results of the algorithm are better than those measured by 1250 Frequency Analysor. Conclusion The error formulae derived are theoretically right and practically valid.
文摘Based on an investigation of existing methods for estimating fre- quency response functions(FRF)at home and abroad,two methods are ad- vanced.The one,denoted as H_(12),avoids underestimates at resonances and overestimates at antiresonances,while the other,denoted as H_F,regards the noise ratio of output to input as varying with the frequency.Finally,a soft- ware for estimating frequency response functions is introduced.A modal test for a steel plate excited with a random signal is made,and frequency response function estimates are made,making use of the above software.The test re- sults conform well with the theoretical analysis.
基金The National Natural Science Foundation of China(No.61231002,61273266,61375028)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110092130004)
文摘In order to improve the design results for the reconfigurable frequency response masking FRM filters an improved design method based on second-order cone programming SOCP is proposed.Unlike traditional methods that separately design the proposed method takes all the desired designing modes into consideration when designing all the subfilters. First an initial solution is obtained by separately designing the subfilters and then the initial solution is updated by iteratively solving a SOCP problem. The proposed method is evaluated on a design example and simulation results demonstrate that jointly designing all the subfilters can obtain significantly lower minimax approximation errors compared to the conventional design method.
文摘This paper proposes an autopilot system that can be used to control the small scale rotorcraft during the flight test for linear-frequency-domain system identification. The input frequency-sweep is generated automatically as part of the autopilot control command. Therefore the bandwidth coverage and consistency of the frequency-sweep are guaranteed to produce high quality data for system identification. Beside that, we can set the safety parameters during the flight test (maximum roll/pitch value, minimum altitude, etc.) so the safety of the whole flight test is guaranteed. This autopilot system is validated using hardware in the loop simulator for hover flight condition.
基金Project (No. 03-02-02-0056 PR0025/04-03) supported by Ministry of Science, Technology and Innovation, Malaysia
文摘This paper presents the effects of surface finish and treatment on the high cycle fatigue behaviour of vibrating cylinder block of a new two-stroke free piston engine at complex variable amplitude loading conditions using frequency response approach. Finite element modelling and frequency response analysis was conducted using finite element analysis software Package MSC.PATRAN/MSC.NASTRAN and fatigue life prediction was carded out using MSC.FATIGUE software. Based on the finite element results, different frequency response approach was applied to predict the cylinder block fatigue life. Results for different load histories and material combinations are also discussed. Results indicated great effects for all surface finish and treatment. It is concluded that polished and cast surface finish conditions give the highest and lowest cylinder block lives, respectively; and that Nitrided treatment leads to longest cylinder block life. The results were used to draw contour plots of fatigue life and damage in the worst or most damaging case.
基金supported in part by the National Key Scientific Instrument and Equipment Development Project(No.61827801)in part by the National Natural Science Foundation of China(No.62271250)+2 种基金in part by Natural Science Foundation of Jiangsu Province(No.BK20211182)in part by the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2022067 and BE2022067-3in part by China Scholarship Council,and in part by Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.KYCX220360.
文摘Ultra-wideband(UWB)technology is a prospective technology for high-rate transmission and accurate localization in the future communication systems.State-of-art channel modeling approaches usually divide the UWB channel into several sub-band channels and model them independently.By considering frequency-dependent channel parameters,a novel analytical UWB channel model with continuous frequency response is proposed.The composite effect of all frequency components within the UWB channel on the channel impulse response(CIR)of delay domain is derived based on the continuous channel transfer function(CTF)of frequency domain.On this basis,a closed-form simulation model for UWB channels and geometry-based parameter calculation method are developed,which can guarantee the continuity of channel characteristics on the frequency domain and greatly reduce the simulation complexity.Finally,the proposed method is applied to generate UWB channel with 2 GHz bandwidth at sub-6GHz and millimeter wave(mmWave)bands,respectively.The channel measurements are also carried out to validate the proposed method.The simulated CIR and power gain are shown to be in good agreement with the measurement data.Moreover,the comparison results of power gain and Doppler power spectral density(DPSD)show that the proposed UWB channel model Received:Apr.23,2022 Revised:Jun.09,2022 Editor:Wei Fan achieves a good balance between the simulation accuracy and efficiency.
基金Ministry of Construction of China through the Science and Technique Program Grant No.06-k6-13Guangzhou Construction Technological Development Foundation through Grant No.200409+1 种基金Guangdong Province Natural Science Foundation through Grant No.5300381 Guangzhou Science and Technique Bureau through Science and Technique Program Grant No.2006J1-C0451
文摘Structural strain modes are able to detect changes in local structural performance, but errors are inevitably intermixed in the measured data. In this paper, strain modal parameters are considered as random variables, and their uncertainty is analyzed by a Bayesian method based on the structural frequency response function (FRF). The estimates of strain modal parameters with maximal posterior probability are determined. Several independent measurements of the FRF of a four-story reinforced concrete flame structural model were performed in the laboratory. The ability to identify the stiffness change in a concrete column using the strain mode was verified. It is shown that the uncertainty of the natural frequency is very small. Compared with the displacement mode shape, the variations of strain mode shapes at each point are quite different. The damping ratios are more affected by the types of test systems. Except for the case where a high order strain mode does not identify local damage, the first order strain mode can provide an exact indication of the damage location.
基金This paper is supported by the National "863" Program in the Tenth Five-Year-Plan (No. 2002AA615020)Eleventh Five-Year-Plan (No. 2006AA09A201)the Focused Subject Program of Beijing (No. XK104910598).
文摘Although magnetotelluric sounding method applied to the land is advanced, there are many difficulties when it is applied to marine environment, one of which is how to lay magnetic field sensors down to the seafloor to complete measurements. To protect the magnetic field sensors from intense erosion and high pressure, suitable high-pressure sealed cabins must be designed to load them. For the consideration of magnetic measurement and marine operation, the sealed pressure cabin should be nonmagnetic and transportable. Among all optional materials, LC4 super.hard aluminum alloy has the highest performance of price/quality ratio to make the sealed pressure cabin. However, it does not mean that the high-pressure sealed cabin made using LC4 will be perfect in performance. In fact, because of its weak magnetism, the pressure cabin made using LC4 has distorting effect on frequency responses of the magnetic field sensors sealed in it. This distorting effect does not affect the use of the magnetic field sensor, but if we want to eliminate its effect, we should study it by experimental measurements. In our experiment tests, frequency sweep magnetic field as excitation signal was used, and then responses of the magnetic field sensor before and after being loaded into the high-pressure sealed cabin were measured. Finally, normalized abnormal curves for the frequency responses were obtained, through which we could show how the high-pressure sealed cabin produces effects on the responses of the magnetic field sensor. Experimental results suggest that the response distortion induced by the sealed pressure cabin appears on mid- and high-frequency areas. Using experimental results as standardization data, the frequency responses collected from seafloor magnetotelluric measurements can be corrected to restore real information about the seafloor field source.
基金supported by the Key Project of the National Natural Science Foundation of China (11132007)
文摘Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .
基金Supported by National Natural Science Foundation of China under Grant No.50379025.
文摘Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.
基金supported in part by the National Natural Science Foundation of China(No.U1966204,51907064).
文摘As renewable energy resources increasingly penetrate the electric grid,the inertia capability of power systems has become a developmental bottleneck.Nevertheless,the importance of primary frequency response(PFR)when making generation-expansion plans has been largely ignored.In this paper,we propose an optimal generation-expansion planning framework for wind and thermal power plants that takes PFR into account.The model is based on the frequency equivalent model.It includes investment,startup/shutdown,and typical operating costs for both thermal and renewable generators.The linearization constraints of PFR are derived theoretically.Case studies based on the modified IEEE 39-bus system demonstrate the efficiency and effectiveness of the proposed method.Compared with methods that ignore PFR,the method proposed in this paper can effectively reduce the cost of the entire planning and operation cycle,improving the accommodation rate of renewable energy.
基金Project supported by the Major State Basic Research Program of China (Grant No 2006CB302802)
文摘With consideration of the modulation frequency of the input lightwave itself, we present a new model to calculate the quantum efficiency of RCE p-i-n photodetectors (PD) by superimposition of multiple reflected lightwaves. For the first time, the optical delay, another important factor limiting the electrical bandwidth of RCE p-i-n PD excluding the transit time of the carriers and RCd response of the photodetector, is analyzed and discussed in detail. The optical delay dominates the bandwidth of RCE p-i-n PD when its active layer is thinner than several 10 nm. These three limiting factors must be considered exactly for design of ultra-high-speed RCE p-i-n PD.
基金supported by National Science Foundation of China(51477091)。
文摘The inertia response and primary frequency regulation capability of synchronous grids are declining owing to the increasing penetration of inverter-based resources. The fast frequency response(FFR) of inverter-based resources is an important mitigation option for maintaining grid security under the conditions of low inertia and insufficient primary frequency response capability. However, the understanding and technical characteristics of the FFR of inverter-based resources are still unclear. Aiming at solving the aforementioned problems, this paper proposes a definition for FFR based on the impact mechanism of FFR on system frequency. The performance requirements of FFR are clarified. Then, the effects of FFR on system frequency characteristics are further analyzed based on steady-state frequency deviation, the initial rate of change of frequency, and the maximum transient frequency deviation. Finally, the system requirements for FFR and its application effects are verified by simulating an actual bulk power grid, providing technical support for subsequent engineering application.
基金supported by the National Natural Science Foundation of China(No.20275021)the Open Foundation of the State Key Laboratory of Chemo/Biosensing and Chemometrics,Hunan University.
文摘The frequency responses of a langasite crystal microbalance (LCM) in liquid phase were investigated. It was shown that the LCM possessed much stronger oscillating ability in liquid phase than that of the commonly used quartz crystal microbalance (QCM). The frequency shifts of the LCM to the changes in mass loading, as well as viscosity and density of the liquid were measured. The LCM was applied to monitor the adsorption process of an ionic liquid film to ethanol vapor.
基金Project supported by the National Nature Science Foundation of China (Grant No 60407001), National High Technology Developing Program of China (Grant No 2006AA03Z0414), the Science Fund for Distinguished YoungScholars of Hubei Province (Grant No 2006ABB017) and the Program for New Century Excellent Talents of Ministry of Education, China (Grant No NCET-04-0715).
文摘An analytic solution derived by multisection model to the small-signal frequency response (SSFR) of wavelength conversion based on cross-gain modulation (XGM) in semiconductor optical amplifiers (SOAs) is presented. The result contains details that can affect the characteristics of SSFR significantly more than previous ones.
基金supported by the Wuhan Applied Basic Research Project,China(Grant No.20140101010009)the National Natural Science Foundation of China(Grant Nos.61405063,61475054,11574105,and 61177095)+1 种基金the Hubei Science and Technology Agency Project,China(Grant No.2015BCE052)the Fundamental Research Funds for the Central Universities,China(Grant No.2017KFYXJJ029)
文摘It has been proposed previously that the coherent detection of a terahertz(THz) pulse can be achieved based on the time-resolved luminescence quenching. In this paper, we investigate the frequency response range of this novel detection technology by simulating the motion of carriers in gallium arsenide(GaAs) by the ensemble Monte Carlo method. At room temperature, for a direct-current(DC) voltage of 20 kV/cm applied to the semiconductor(GaAs) and sampling time o140 fs, the luminescence quenching phenomena induced by terahertz pulses with different center frequencies are studied The results show that the quenching efficiency is independent of the THz frequency when the frequency is in a range o0.1 THz–4 THz. However, when the frequency exceeds 4 THz, the efficiency decreases with the increase of frequency Therefore, the frequency response range is 0.1 THz–4 THz. Moreover, when the sampling time is changed to 100 fs the frequency response range is extended to be approximately 0.1 THz–5.6 THz. This study of the frequency-dependen characteristics of the luminescence response to the THz pulse can provide a theoretical basis for the exploration of THz detection technology.
文摘In this paper, a new numerical simulation approach is proposed for the study of open-loop frequency response of a chaotic masking system. Using Chua's circuit and the Lorenz system as illustrative examples, we have shown that one can employ chaos synchronization to separate the feedback network from a chaotic masking system, and then use numerical simulation to obtain the open-loop synchronization response, the phase response, and the amplitude response of a chaotic masking system. Based on the analysis of the frequency response, we have also proved that changing the amplitude of the exciting (input) signal within normal working domain does not influence the frequency response of the chaotic masking system. The new numerical simulation method developed in this paper can be extended to consider the open-loop frequency response of other systems described by differential or difference equations.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0403000)the National Natural Science Foundation of China(Grant No.11574355)
文摘The giant electrorheological (ER) fluid is based on the principle of a polar molecule dominated electrorheological (PM-ER) effect. The response of the shear stress for PM-ER fluid in alternate electric fields with triangle/square wave forms for different frequencies has been studied. The results show that the shear stress cannot well follow the rapid change of electric field and the average shear stresses of PM-ER fluids decrease with the increasing frequency of the applied field due to the response decay of the shear stress on applied field. The behavior is quite different from that of traditional ER fluids. However, the average shear stress of PM-ER fluid in a square wave electric field of iE at low frequency can keep at high value. The obtained knowledge must be helpful for the design and operation of PM-ER fluids in the applications.