The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a c...The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a certain model with certain regularity,the FH frequency is thus predictable.In this paper,we investigate the FH frequency reconnais-sance and prediction of a non-cooperative communi-cation network by effective FH signal detection,time-frequency(TF)analysis,wavelet detection and fre-quency estimation.With the intercepted massive FH signal data,long short-term memory(LSTM)neural network model is constructed for FH frequency pre-diction.Simulation results show that our parameter es-timation methods could estimate frequency accurately in the presence of certain noise.Moreover,the LSTM-based scheme can effectively predict FH frequency and frequency interval.展开更多
In a competitive and deregulated power scenario, the utilities try to maintain their real electric power generation in balance with the load demand, which creates a need for the precise real time generation scheduling...In a competitive and deregulated power scenario, the utilities try to maintain their real electric power generation in balance with the load demand, which creates a need for the precise real time generation scheduling (GS). In this paper, the GS problem is solved to perform the unit commitment (UC) based on frequency prediction by using artificial neural network (ANN) with the objective to minimize the overall system cost of the state utility. The introduction of availability-based tariff (ABT) signifies the importance of frequency in GS. Under- prediction or over-prediction will result in an unnecessary commitment of generating units or buying power from central generating units at a higher cost. Therefore, an accurate frequency prediction is the first step toward optimal GS. The dependency of frequency on various parameters such as actual generation, load demand, wind power and power deficit has been considered in this paper. The proposed technique provides a reliable solution for the input parameter different from the one presented in the training data. The performance of the frequency predictor model has been evaluated based on the absolute percentage error (APE) and the mean absolute percentage error (MAPE). The proposed predicted frequency sensitive GS model is applied to the system of Indian state of Tamilnadu, which reduces the overall system cost of the state utility by keeping off the dearer units selected based on the predicted frequency.展开更多
The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The ...The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The frequency spectrum quantitative prediction(FSQP)method is used to solve the frequency spectra for predicting the coupling strength among the eigen-modes in AlN and ZnO FBARs.The results elaborate that the flip of the TE and TSh2 branches results in novel self-coupling vibration between the small-wavenumber TE and large-wavenumber TE modes,which has never been observed in the ZnO FBAR.Besides,the mode flip leads to the change in the relative positions of the frequency spectral curves about the TE cut-off frequency.The obtained frequency spectra can be used to predict the mode-coupling behaviors of the vibration modes in the AlN FBAR.The conclusions drawn from the results can help to distinguish the desirable operation modes of the AlN FBAR with very weak coupling strength from all vibration modes.展开更多
In view of the difficulty of automatic adjustment, the recovery lag and the major accident potential of the mine ventilation system, an experimental model of the pipe net was established according to the typical one m...In view of the difficulty of automatic adjustment, the recovery lag and the major accident potential of the mine ventilation system, an experimental model of the pipe net was established according to the typical one mine and one working face ventilation system of Daliuta coal mine. Using the best uniform approximation method of Chebyshev interpolation to fit the fan performance curve, we experimentally determined fan characteristics with different frequencies and establish the data base for the curves. Based on ventilation network monitoring theory, we designed a monitoring system for ventilation network parameter monitoring and fan operating frequency automatic control. Using the absolute methane emission quantity to predict the air quantity requirement of branch and fan frequency, we established a f-ω regulation model based on fan frequency and absolute methane emission quantity. After analysing methane emission and distribution characteristics, using CO_2 to simulate the methane emission characteristics from a working face, we verified the correctness and rationality of the f-ω regulation model. The fan operation frequency is adjusted by the method of air adjustment change with methane emission quantity and the curve searching method after determining air quantity requirements. The results show that the air quantity in a branch strictly changes according to the f-ω regulation model, in the airincreasing dilution by fan frequency regulation, the CO_2 concentration is limited to the set threshold value. The paper verifies the practicability of a frequency regulation system and the feasibility of the frequency adjustment scheme and provides guidance for the construction of automatic frequency conversion control system in coal mine ventilation networks.展开更多
The admittance measurements of a hetero-junction can be used to derive the density of the interfacial state in the hetero-junction. Hence, prediction conductance via frequency is very useful for comprehension of the a...The admittance measurements of a hetero-junction can be used to derive the density of the interfacial state in the hetero-junction. Hence, prediction conductance via frequency is very useful for comprehension of the admittance of a hetero-junction using a mathematical strategy. From the observations on the curve of the frequencydependent conductance of the hetero-junction an analytic model with four-parameters was developed that relates conductance to frequency; the theoretical results agree quite well with the experimental data. The model shows potential for a variety of applications including different electronic devices. The model is a practical tool that can be readily used for assessing the electronic behaviors of a hetero-junction and is scientifically justifiable. In addition, the mathematical bridge to link the density of the interfacial state of the(pyronine-B)/p-Si structure to energy implies a good route to discuses the density of the interfacial state of interfaces.展开更多
文摘The continuous change of communica-tion frequency brings difficulties to the reconnaissance and prediction of non-cooperative communication net-works.Since the frequency-hopping(FH)sequence is usually generated by a certain model with certain regularity,the FH frequency is thus predictable.In this paper,we investigate the FH frequency reconnais-sance and prediction of a non-cooperative communi-cation network by effective FH signal detection,time-frequency(TF)analysis,wavelet detection and fre-quency estimation.With the intercepted massive FH signal data,long short-term memory(LSTM)neural network model is constructed for FH frequency pre-diction.Simulation results show that our parameter es-timation methods could estimate frequency accurately in the presence of certain noise.Moreover,the LSTM-based scheme can effectively predict FH frequency and frequency interval.
文摘In a competitive and deregulated power scenario, the utilities try to maintain their real electric power generation in balance with the load demand, which creates a need for the precise real time generation scheduling (GS). In this paper, the GS problem is solved to perform the unit commitment (UC) based on frequency prediction by using artificial neural network (ANN) with the objective to minimize the overall system cost of the state utility. The introduction of availability-based tariff (ABT) signifies the importance of frequency in GS. Under- prediction or over-prediction will result in an unnecessary commitment of generating units or buying power from central generating units at a higher cost. Therefore, an accurate frequency prediction is the first step toward optimal GS. The dependency of frequency on various parameters such as actual generation, load demand, wind power and power deficit has been considered in this paper. The proposed technique provides a reliable solution for the input parameter different from the one presented in the training data. The performance of the frequency predictor model has been evaluated based on the absolute percentage error (APE) and the mean absolute percentage error (MAPE). The proposed predicted frequency sensitive GS model is applied to the system of Indian state of Tamilnadu, which reduces the overall system cost of the state utility by keeping off the dearer units selected based on the predicted frequency.
基金Project supported by the National Natural Science Foundation of China(Nos.11872329,12192211,and 12072315)the Natural Science Foundation of Zhejiang Province of China(No.LD21A020001)+1 种基金the National Postdoctoral Program for Innovation Talents of China(No.BX2021261)the China Postdoctoral Science Foundation Funded Project(No.2022M722745)。
文摘The dispersion curves of bulk waves propagating in both AlN and ZnO film bulk acoustic resonators(FBARs)are presented to illustrate the mode flip of the thickness-extensional(TE)and 2nd thickness-shear(TSh2)modes.The frequency spectrum quantitative prediction(FSQP)method is used to solve the frequency spectra for predicting the coupling strength among the eigen-modes in AlN and ZnO FBARs.The results elaborate that the flip of the TE and TSh2 branches results in novel self-coupling vibration between the small-wavenumber TE and large-wavenumber TE modes,which has never been observed in the ZnO FBAR.Besides,the mode flip leads to the change in the relative positions of the frequency spectral curves about the TE cut-off frequency.The obtained frequency spectra can be used to predict the mode-coupling behaviors of the vibration modes in the AlN FBAR.The conclusions drawn from the results can help to distinguish the desirable operation modes of the AlN FBAR with very weak coupling strength from all vibration modes.
基金support from the National Key Research and Development Plan (No.2016YFC0801800)the National Natural Science Foundation of China (No.51404263)+2 种基金the National Natural Science Foundation of Jiangsu (No.BK20130203)the Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Nos.2014XT02 and 2014ZDPY03)
文摘In view of the difficulty of automatic adjustment, the recovery lag and the major accident potential of the mine ventilation system, an experimental model of the pipe net was established according to the typical one mine and one working face ventilation system of Daliuta coal mine. Using the best uniform approximation method of Chebyshev interpolation to fit the fan performance curve, we experimentally determined fan characteristics with different frequencies and establish the data base for the curves. Based on ventilation network monitoring theory, we designed a monitoring system for ventilation network parameter monitoring and fan operating frequency automatic control. Using the absolute methane emission quantity to predict the air quantity requirement of branch and fan frequency, we established a f-ω regulation model based on fan frequency and absolute methane emission quantity. After analysing methane emission and distribution characteristics, using CO_2 to simulate the methane emission characteristics from a working face, we verified the correctness and rationality of the f-ω regulation model. The fan operation frequency is adjusted by the method of air adjustment change with methane emission quantity and the curve searching method after determining air quantity requirements. The results show that the air quantity in a branch strictly changes according to the f-ω regulation model, in the airincreasing dilution by fan frequency regulation, the CO_2 concentration is limited to the set threshold value. The paper verifies the practicability of a frequency regulation system and the feasibility of the frequency adjustment scheme and provides guidance for the construction of automatic frequency conversion control system in coal mine ventilation networks.
文摘The admittance measurements of a hetero-junction can be used to derive the density of the interfacial state in the hetero-junction. Hence, prediction conductance via frequency is very useful for comprehension of the admittance of a hetero-junction using a mathematical strategy. From the observations on the curve of the frequencydependent conductance of the hetero-junction an analytic model with four-parameters was developed that relates conductance to frequency; the theoretical results agree quite well with the experimental data. The model shows potential for a variety of applications including different electronic devices. The model is a practical tool that can be readily used for assessing the electronic behaviors of a hetero-junction and is scientifically justifiable. In addition, the mathematical bridge to link the density of the interfacial state of the(pyronine-B)/p-Si structure to energy implies a good route to discuses the density of the interfacial state of interfaces.