This paper describes a high security data transmission system over X-band microwave frequency. The paper has two parts. The first part deals with encryption of binary data by Advanced Encryption Standard (AES) using V...This paper describes a high security data transmission system over X-band microwave frequency. The paper has two parts. The first part deals with encryption of binary data by Advanced Encryption Standard (AES) using VHDL modeling of Field Programmable Gate Array (FPGA). The second part deals with a novel idea of transmitting the encrypted data by using a single klystron. This requires the simultaneous generation of a pair of two independent RF frequencies from a reflex klystron working for X-band frequency range. In this scheme, the klystron is suitably biased on the repeller terminal and superimposed on a train of AES encrypted binary data so as to create two RF frequencies one corresponding to negative peaks and the other one to the positive peaks of the data resulting in an Frequency Shift Keying (FSK) signal. The results have been verified experimentally.展开更多
文摘This paper describes a high security data transmission system over X-band microwave frequency. The paper has two parts. The first part deals with encryption of binary data by Advanced Encryption Standard (AES) using VHDL modeling of Field Programmable Gate Array (FPGA). The second part deals with a novel idea of transmitting the encrypted data by using a single klystron. This requires the simultaneous generation of a pair of two independent RF frequencies from a reflex klystron working for X-band frequency range. In this scheme, the klystron is suitably biased on the repeller terminal and superimposed on a train of AES encrypted binary data so as to create two RF frequencies one corresponding to negative peaks and the other one to the positive peaks of the data resulting in an Frequency Shift Keying (FSK) signal. The results have been verified experimentally.