This paper uses a Computer Simulation Technology microwave studio to simulate the performance of a new highdirectivity anisotropic magnetic metamaterial antenna loaded with a frequency-selective surface. Frequency-sel...This paper uses a Computer Simulation Technology microwave studio to simulate the performance of a new highdirectivity anisotropic magnetic metamaterial antenna loaded with a frequency-selective surface. Frequency-selective surface with cross-dipole element has a great effect on the directivity, radiation pattern, and gain of such an antenna. The experimental results show that frequency-selective surface (FSS) significantly improve the radiation performance of anisotropic magnetic metamaterial antenna. For example, as a single anisotropic magnetic metamaterial antenna, half power beam width is 4 degrees in the H planes, and the gain of this antenna is 19.5dBi at 10CHz, achieving a 2.1 degree increment in half power beam width, and a 7.3 dB gain increment by loading with the FSS reflector. The simulating results are consistent with our experimental results.展开更多
The problem of soft-input so,output ( SISO ) detection for time-varying frequency-selec- tive fading channels is considered. Based on a suitably-designed factor graph and the sum-product al- gorithm, a low-complexit...The problem of soft-input so,output ( SISO ) detection for time-varying frequency-selec- tive fading channels is considered. Based on a suitably-designed factor graph and the sum-product al- gorithm, a low-complexity iterative message passing scheme is proposed for joint channel estima- tion, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly de- crease compared to the optimal maximum a posteriori (MAP) detection with the exponential com- plexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.展开更多
As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next...As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next-generation (NextG) broadband mobile wireless multimedia communications. The symbols detection problem of the V-BLAST OFDM system is investigated under the frequency-selective fading environment. The joint space-frequency demultiplexing operation is proposed in the V-BLAST OFDM system. Successively, one novel half-rate rotational invariance joint space-frequency coding scheme for the V-BLAST OFDM system is proposed. By elegantly exploiting the above rotational invariance property, we derive one direct symbols detection scheme without knowing channels state information (CSI) for the frequency-selective V-BLAST OFDM system. Extensive simulation results demonstrate the validity of the novel half-rate rotational invariance joint space-frequency coding scheme and the performance of the direct symbols detection scheme.展开更多
Double-screen frequency-selective surfaces (FSSs) can bring about a better flattened effect and a rapidly declining edge. They are therefore an effective means to achieve outer-zone stealth of the radar cabin to det...Double-screen frequency-selective surfaces (FSSs) can bring about a better flattened effect and a rapidly declining edge. They are therefore an effective means to achieve outer-zone stealth of the radar cabin to detect radar waves. In this article, a double-screen wide-bandpass FSS structure is designed and the transmission characteristics of the units under alignment and non-alignment are simulated by means of the spectral domain approach. Meanwhile, the experimental parts fabricated by vacuum evaporation and lithography are tested in a microwave chamber. Tile results show that the aligned unit structure has good incident angle stability and can achieve high transmittance when the bandwidth is 3.3 GHz, and the transmission loss is less than -1 dB. When the units have a non-aligned structure, the bandwidth decreases and transmission loss increases with increasing incident angle.展开更多
To improve the performance of space-time coding over downlink frequency-selective correlated fading channels, a novel transmission scheme combining eigenbeamfoming and OFDM is proposed. Provided that the channel corre...To improve the performance of space-time coding over downlink frequency-selective correlated fading channels, a novel transmission scheme combining eigenbeamfoming and OFDM is proposed. Provided that the channel correlated statistics are available at the transmitter, the wideband correlated fading channels can be converted into an independent FIR channel with 2 transmitting antennas and N receiving antennas by eigenbeamforming and dimension reduction. OFDM is utilized to convert the FIR channel into a group of independent parallel subchanneis to carry space-time codes. With the new structure, the performance of space-time coding over downlink wideband correlated fading channels is greatly improved and the system complexity is reduced. Validity of the proposed system is verified by simulations under different conditions. Comparison between the new structure and an available structure is made both theoretically and computationslly.展开更多
An experimental double-layer active frequency-selective surface(AFSS) for stealth radome is proposed. The AFSS is a planar structure which is composed of a fixed frequency-selective surface(FSS), a PIN diodes arra...An experimental double-layer active frequency-selective surface(AFSS) for stealth radome is proposed. The AFSS is a planar structure which is composed of a fixed frequency-selective surface(FSS), a PIN diodes array, and a DC bias network. The AFSS elements incorporating switchable PIN diodes are discussed. By means of controlling the DC bias network, it is possible to switch the frequency response for reflecting and transmitting. Measured and simulated data validate that when the incidence angle varies from 0°to 30° the AFSS produces more than-11.5 dB isolation across6–18 GHz when forward biased. The insertion loss(IL) is less than 0.5 dB across 10–11 GHz when reverse biased.展开更多
Frequency-selective surface (FSS) is a two-dimensional periodic structure consisting of a dielectric substrate and the metal units (or apertures) arranged periodically on it. When manufacturing the substrate, its ...Frequency-selective surface (FSS) is a two-dimensional periodic structure consisting of a dielectric substrate and the metal units (or apertures) arranged periodically on it. When manufacturing the substrate, its thickness and dielectric constant suffer process tolerances. This may induce the center frequency of the FSS to shift, and consequently influence its characteristics. In this paper, a bandpass FSS structure is designed. The units are the Jerusalem crosses arranged squarely. The mode-matching technique is used for simulation. The influence of the tolerances of the substrate's thickness and dielectric constant on the center frequency is analyzed. Results show that the tolerances of thickness and dielectric constant have different influences on the center frequency of the FSS. It is necessary to ensure the process tolerance of the dielectric constant in the design and manufacturing of the substrate in order to stabilize the center frequency.展开更多
The MultiCarrier Code Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence (DS-) CDMA systems due to serious InterChip Interference (ICI) and MultiUser Interf...The MultiCarrier Code Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence (DS-) CDMA systems due to serious InterChip Interference (ICI) and MultiUser Interference (MUI) in high-data-rate wireless communication systems. In this paper, the Uniform Linear Array (ULA) is applied to the base station of macrocellular MC-CDMA systems in a frequency-selective fading channel environment. A joint space-frequency multiuser symbol sequence detector is developed for all active users within one macrocell without space-frequency channel estimation. Simultaneously, Directions-Of-Arrivals (DOAs) of all active users can also be estimated. By dividing the ULA into two identical overlapping subarrays, a specific auxiliary matrix is constructed, which includes both symbol sequence and DOA information of all active users. Then, based on the subspace method, performing the eigen decomposition on such auxiliary matrix, the closed-form solution of symbol sequences and DOAs for all active users can be obtained. In comparison with schemes based on channel estimation, our algorithm need not explicitly estimate the space-frequency channel for each active user,so it has lower computation complexity. Extensive computer simulations demonstrate the overall performance of this novel scheme.展开更多
Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differenti...Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.展开更多
Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat fre...Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat frequency-selective fading, DUSTM has been applied to each subcarrier of an OFDM system and DUSTM-OFDM system was proposed. Both DUSTM and DUSTM-OFDM, however, are designed for slowly fading channels and suffer performance deterioration in fast fading channels. In this paper, two novel differential unitary space-time modulation schemes are proposed for fast fading channels. For fast fiat-fading channels, a subatrix interleaved DUSTM (SMI-DUSTM) scheme is proposed, in which matrix-segmentation and sub-matrix based interleaving are introduced into DUSTM system. For fast frequency-selective fading channels, a differential unitary space-frequency modulation (DUSFM) scheme is proposed, in which existing unitary space-time codes are employed across transmit antennas and OFDM subcarriers simultaneouslv and differential modulation is performed between two adjacent OFDM blocks. Compared with DUSTM and DUSTM-OFDM schemes, SMI-DUSTM and DUSFM-OFDM are more robust to fast channel fading with low decoding complexity, which is demonstrated by performance analysis and simulation resuits.展开更多
This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the p...This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the purpose of accomplishing soft input soft output iterative decoding of LDPC codes, a new soft decision metric generation method is proposed,which obviates the need of the noise variance estimation, for M-PSK/M-QAM-type high-order modulation over frequency selective fading channel. Computer simulation indicates that, there is no performance loss with our new metric, but the complexity of implementation is reduced, and that the LDPC codes are effective to improve the Bit Error Rate (BER) of FMT in frequency selective fading channel.展开更多
In this paper, a simplified differential amplitude demodulation scheme for high-level Differential Amplitude and Phase Shift Keying (DAPSK) techniqus is proposed, which requires fewer thresholds for demodulation and...In this paper, a simplified differential amplitude demodulation scheme for high-level Differential Amplitude and Phase Shift Keying (DAPSK) techniqus is proposed, which requires fewer thresholds for demodulation and thus has lower complexity. The performance of the Orthogonal Frequency Division Multiplexing (OFDM) system combined with the simplified DAPSK scheme is investigated over frequency-selective fading channels, then. Compared with coherent QAM-OFDM system, DAPSK-OFDM system has much lower complexity since channel estimation and equalization are unnecessary. Further more, under the condition of the same data rate, DAPSK-OFDM can achieve the performance close to or even better than that of QAM-OFDM system which adopts pilot symbols for channel estimation, by employing the concatenated code and utilizing the additional redundancy for outer coding at high Signal-to-Noise Ratios (SNRs).展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60371010)
文摘This paper uses a Computer Simulation Technology microwave studio to simulate the performance of a new highdirectivity anisotropic magnetic metamaterial antenna loaded with a frequency-selective surface. Frequency-selective surface with cross-dipole element has a great effect on the directivity, radiation pattern, and gain of such an antenna. The experimental results show that frequency-selective surface (FSS) significantly improve the radiation performance of anisotropic magnetic metamaterial antenna. For example, as a single anisotropic magnetic metamaterial antenna, half power beam width is 4 degrees in the H planes, and the gain of this antenna is 19.5dBi at 10CHz, achieving a 2.1 degree increment in half power beam width, and a 7.3 dB gain increment by loading with the FSS reflector. The simulating results are consistent with our experimental results.
基金Supported by the National Natural Science Foundation of China(61201181)Specialized Research Fund for the Doctoral Program of Higher Education(20121101120020)the Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘The problem of soft-input so,output ( SISO ) detection for time-varying frequency-selec- tive fading channels is considered. Based on a suitably-designed factor graph and the sum-product al- gorithm, a low-complexity iterative message passing scheme is proposed for joint channel estima- tion, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly de- crease compared to the optimal maximum a posteriori (MAP) detection with the exponential com- plexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.
文摘As the combining form of the orthogonal frequency-division multiplexing (OFDM) technique and the vertical Bell Labs layered space-time (V-BLAST) architecture, the V-BLAST OFDM system can better meet the demand of next-generation (NextG) broadband mobile wireless multimedia communications. The symbols detection problem of the V-BLAST OFDM system is investigated under the frequency-selective fading environment. The joint space-frequency demultiplexing operation is proposed in the V-BLAST OFDM system. Successively, one novel half-rate rotational invariance joint space-frequency coding scheme for the V-BLAST OFDM system is proposed. By elegantly exploiting the above rotational invariance property, we derive one direct symbols detection scheme without knowing channels state information (CSI) for the frequency-selective V-BLAST OFDM system. Extensive simulation results demonstrate the validity of the novel half-rate rotational invariance joint space-frequency coding scheme and the performance of the direct symbols detection scheme.
基金supported by the Doctoral Fund of the Ministry of Education of China (Grant No. 20092216120005)the National Natural Science Foundation of China (Grant No. 41004042)
文摘Double-screen frequency-selective surfaces (FSSs) can bring about a better flattened effect and a rapidly declining edge. They are therefore an effective means to achieve outer-zone stealth of the radar cabin to detect radar waves. In this article, a double-screen wide-bandpass FSS structure is designed and the transmission characteristics of the units under alignment and non-alignment are simulated by means of the spectral domain approach. Meanwhile, the experimental parts fabricated by vacuum evaporation and lithography are tested in a microwave chamber. Tile results show that the aligned unit structure has good incident angle stability and can achieve high transmittance when the bandwidth is 3.3 GHz, and the transmission loss is less than -1 dB. When the units have a non-aligned structure, the bandwidth decreases and transmission loss increases with increasing incident angle.
基金Project supported by National Natural Science Foundation ofChina (Grant No .60172028) ,Natural Science Foundation ofShanxi Province(Grant No .2004F45)
文摘To improve the performance of space-time coding over downlink frequency-selective correlated fading channels, a novel transmission scheme combining eigenbeamfoming and OFDM is proposed. Provided that the channel correlated statistics are available at the transmitter, the wideband correlated fading channels can be converted into an independent FIR channel with 2 transmitting antennas and N receiving antennas by eigenbeamforming and dimension reduction. OFDM is utilized to convert the FIR channel into a group of independent parallel subchanneis to carry space-time codes. With the new structure, the performance of space-time coding over downlink wideband correlated fading channels is greatly improved and the system complexity is reduced. Validity of the proposed system is verified by simulations under different conditions. Comparison between the new structure and an available structure is made both theoretically and computationslly.
基金Project supported by the National Basic Resarch Program of China(Grant No.2014CB339800)the National Natural Science Foundation of China(Grant No.11173015)
文摘An experimental double-layer active frequency-selective surface(AFSS) for stealth radome is proposed. The AFSS is a planar structure which is composed of a fixed frequency-selective surface(FSS), a PIN diodes array, and a DC bias network. The AFSS elements incorporating switchable PIN diodes are discussed. By means of controlling the DC bias network, it is possible to switch the frequency response for reflecting and transmitting. Measured and simulated data validate that when the incidence angle varies from 0°to 30° the AFSS produces more than-11.5 dB isolation across6–18 GHz when forward biased. The insertion loss(IL) is less than 0.5 dB across 10–11 GHz when reverse biased.
文摘Frequency-selective surface (FSS) is a two-dimensional periodic structure consisting of a dielectric substrate and the metal units (or apertures) arranged periodically on it. When manufacturing the substrate, its thickness and dielectric constant suffer process tolerances. This may induce the center frequency of the FSS to shift, and consequently influence its characteristics. In this paper, a bandpass FSS structure is designed. The units are the Jerusalem crosses arranged squarely. The mode-matching technique is used for simulation. The influence of the tolerances of the substrate's thickness and dielectric constant on the center frequency is analyzed. Results show that the tolerances of thickness and dielectric constant have different influences on the center frequency of the FSS. It is necessary to ensure the process tolerance of the dielectric constant in the design and manufacturing of the substrate in order to stabilize the center frequency.
基金Partially supported by the National Natural Science Foundation(No.69872029)and the Research Fund for Doctoral Program of Higher Education(No.19990690808)of China
文摘The MultiCarrier Code Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence (DS-) CDMA systems due to serious InterChip Interference (ICI) and MultiUser Interference (MUI) in high-data-rate wireless communication systems. In this paper, the Uniform Linear Array (ULA) is applied to the base station of macrocellular MC-CDMA systems in a frequency-selective fading channel environment. A joint space-frequency multiuser symbol sequence detector is developed for all active users within one macrocell without space-frequency channel estimation. Simultaneously, Directions-Of-Arrivals (DOAs) of all active users can also be estimated. By dividing the ULA into two identical overlapping subarrays, a specific auxiliary matrix is constructed, which includes both symbol sequence and DOA information of all active users. Then, based on the subspace method, performing the eigen decomposition on such auxiliary matrix, the closed-form solution of symbol sequences and DOAs for all active users can be obtained. In comparison with schemes based on channel estimation, our algorithm need not explicitly estimate the space-frequency channel for each active user,so it has lower computation complexity. Extensive computer simulations demonstrate the overall performance of this novel scheme.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2003AA123310) and the National Natural Science Foundation of China (No. 60272079)
文摘Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre- quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre- quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre- quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check (LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based TF-DDST OFDM system has low decoding complexity and relatively better performance.
基金Supported by the High Technology Research and Development Program of China (No. 2003AA12331007 ) and National Natural Science Foundation of China ( No. 60272079).
文摘Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat frequency-selective fading, DUSTM has been applied to each subcarrier of an OFDM system and DUSTM-OFDM system was proposed. Both DUSTM and DUSTM-OFDM, however, are designed for slowly fading channels and suffer performance deterioration in fast fading channels. In this paper, two novel differential unitary space-time modulation schemes are proposed for fast fading channels. For fast fiat-fading channels, a subatrix interleaved DUSTM (SMI-DUSTM) scheme is proposed, in which matrix-segmentation and sub-matrix based interleaving are introduced into DUSTM system. For fast frequency-selective fading channels, a differential unitary space-frequency modulation (DUSFM) scheme is proposed, in which existing unitary space-time codes are employed across transmit antennas and OFDM subcarriers simultaneouslv and differential modulation is performed between two adjacent OFDM blocks. Compared with DUSTM and DUSTM-OFDM schemes, SMI-DUSTM and DUSFM-OFDM are more robust to fast channel fading with low decoding complexity, which is demonstrated by performance analysis and simulation resuits.
基金Supported by 863 program of China under Grant 2001AA123015.
文摘This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the purpose of accomplishing soft input soft output iterative decoding of LDPC codes, a new soft decision metric generation method is proposed,which obviates the need of the noise variance estimation, for M-PSK/M-QAM-type high-order modulation over frequency selective fading channel. Computer simulation indicates that, there is no performance loss with our new metric, but the complexity of implementation is reduced, and that the LDPC codes are effective to improve the Bit Error Rate (BER) of FMT in frequency selective fading channel.
基金This workis supported by National"863"High Technology Projects of China (G1999035804) .
文摘In this paper, a simplified differential amplitude demodulation scheme for high-level Differential Amplitude and Phase Shift Keying (DAPSK) techniqus is proposed, which requires fewer thresholds for demodulation and thus has lower complexity. The performance of the Orthogonal Frequency Division Multiplexing (OFDM) system combined with the simplified DAPSK scheme is investigated over frequency-selective fading channels, then. Compared with coherent QAM-OFDM system, DAPSK-OFDM system has much lower complexity since channel estimation and equalization are unnecessary. Further more, under the condition of the same data rate, DAPSK-OFDM can achieve the performance close to or even better than that of QAM-OFDM system which adopts pilot symbols for channel estimation, by employing the concatenated code and utilizing the additional redundancy for outer coding at high Signal-to-Noise Ratios (SNRs).