期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Fretting Wear Characteristics of Nuclear Fuel Cladding in High-Temperature Pressurized Water
1
作者 Jun Wang Haojie Li +4 位作者 Zhengyang Li Yujie Lei Quanyao Ren Yongjun Jiao Zhenbing Cai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期326-338,共13页
In pressurized water reactor(PWR),fretting wear is one of the main causes of fuel assembly failure.Moreover,the operation condition of cladding is complex and harsh.A unique fretting damage test equipment was develope... In pressurized water reactor(PWR),fretting wear is one of the main causes of fuel assembly failure.Moreover,the operation condition of cladding is complex and harsh.A unique fretting damage test equipment was developed and tested to simulate the fretting damage evolution process of cladding in the PWR environment.It can simulate the fretting wear experiment of PWR under different temperatures(maximum temperature is 350℃),displacement amplitude,vibration frequency,and normal force.The fretting wear behavior of Zr-4 alloy under different temperature environments was tested.In addition,the evolution of wear scar morphology,profile,and wear volume was studied using an optical microscope(OM),scanning electron microscopy(SEM),and a 3D white light interferometer.Results show that higher water temperature evidently decreased the cladding wear volume,the wear mechanism of Zr-4 cladding changed from abrasive wear to adhesive wear and the formation of an oxide layer on the wear scar reduced the wear volume and maximum wear depth. 展开更多
关键词 fretting wear CLADDING High temperature and high pressure Zirconium alloy
下载PDF
Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions 被引量:5
2
作者 Zhen-Bing Cai Jin-Fang Peng +2 位作者 Hao Qian Li-Chen Tang Min-Hao Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期819-828,共10页
The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibra- tion, and it will take potential hazards to the service of the equipment. However, the present study focuses on ... The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibra- tion, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry envi- ronment is used for comparison. Varied analytical tech- niques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Char- acterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equip- ment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatiguewear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments. 展开更多
关键词 Impact fretting wear Alloy 690 Oxidativewear CRACK Fracture appearance
下载PDF
Experimental and numerical study on fretting wear and fatigue of full-scale railway axles 被引量:8
3
作者 Lang Zou Dongfang Zeng +3 位作者 Yabo Li Kai Yang Liantao Lu Caiqin Yuan 《Railway Engineering Science》 2020年第4期365-381,共17页
This study investigated the fretting wear and fatigue of full-scale railway axles.Fatigue tests were conducted on full-scale railway axles,and the fretting wear and fretting fatigue in the fretted zone of the railway ... This study investigated the fretting wear and fatigue of full-scale railway axles.Fatigue tests were conducted on full-scale railway axles,and the fretting wear and fretting fatigue in the fretted zone of the railway axles were analysed.Three-dimensional finite element models were established based on the experimental results.Then,multi-axial fatigue parameters and a linear elastic fracture mechanics-based approach were used to investigate the fretting fatigue crack initiation and propagation,respectively,in which the role of the fretting wear was taken into account.The experimental and simulated results showed that the fretted zone could be divided into zones I-III according to the surface damage morphologies.Fretting wear alleviated the stress concentration near the wheel seat edge and resulted in a new stress concentration near the worn/unworn boundary in zone II,which greatly promoted the fretting crack initiation at the inner side of the fretted zone.Meanwhile,the stress concentration also increased the equivalent stress intensity factor range DKeq below the mating surface,and thus promoted the propagation of fretting fatigue crack.Based on these findings,the effect of the stress redistribution resulting from fretting wear is suggested to be taken into account when evaluating the fretting fatigue in railway axles. 展开更多
关键词 Railway axle fretting wear fretting fatigue Crack initiation Crack propagation Finite element
下载PDF
Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment 被引量:3
4
作者 LUO Jun ZHENG Jianfeng PENG Jinfang HE Liping ZHU Minhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期288-296,共9页
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ... The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear. 展开更多
关键词 fretting wear fretting regimes low temperature gas multi-component thermo-chemical treatment(LTGMTT) modified layer medium carbon steel
下载PDF
A Review on Fretting Wear Mechanisms,Models and Numerical Analyses 被引量:3
5
作者 Tongyan Yue Magd Abdel Wahab 《Computers, Materials & Continua》 SCIE EI 2019年第5期405-432,共28页
Fretting wear is a material damage in contact surfaces due to micro relative displacement between them.It causes some general problems in industrial applications,such as loosening of fasteners or sticking in component... Fretting wear is a material damage in contact surfaces due to micro relative displacement between them.It causes some general problems in industrial applications,such as loosening of fasteners or sticking in components supposed to move relative to each other.Fretting wear is a complicated problem involving material properties of tribosystem and working conditions of them.Due to these various factors,researchers have studied the process of fretting wear by experiments and numerical modelling methods.This paper reviews recent literature on the numerical modelling method of fretting wear.After a briefly introduction on the mechanism of fretting wear,numerical models,which are critical issues for fretting wear modelling,are reviewed.The paper is concluded by highlighting possible research topics for future work. 展开更多
关键词 fretting wear wear models wear mechanisms numerical modelling
下载PDF
Multiscale Analysis of the Effect of Debris on Fretting Wear Process Using a Semi-Concurrent Method
6
作者 Shengjie Wang Tongyan Yue Magd Abdel Wahab 《Computers, Materials & Continua》 SCIE EI 2020年第1期17-35,共19页
Fretting wear is a phenomenon,in which wear happens between two oscillatory moving contact surfaces in microscale amplitude.In this paper,the effect of debris between pad and specimen is analyzed by using a semi-concu... Fretting wear is a phenomenon,in which wear happens between two oscillatory moving contact surfaces in microscale amplitude.In this paper,the effect of debris between pad and specimen is analyzed by using a semi-concurrent multiscale method.Firstly,the macroscale fretting wear model is performed.Secondly,the part with the wear profile is imported from the macroscale model to a microscale model after running in stage.Thirdly,an effective pad’s radius is extracted by analyzing the contact pressure in order to take into account the effect of the debris.Finally,the effective radius is up-scaled from the microscale model to the macroscale model,which is used after running in stage.In this way,the effect of debris is considered by changing the radius of the pad in the macroscale model.Due to the smaller number of elements in the microscale model compared with the macroscale model containing the debris layer,the semi-concurrent method proposed in this paper is more computationally efficient.Moreover,the results of this semi-concurrent method show a better agreement with experimental data,compared to the results of the model ignoring the effect of debris. 展开更多
关键词 fretting wear DEBRIS multiscale analysis semi-concurrent
下载PDF
Low-Frequency Reciprocating Fretting Wear Testing System Design and Experiment Research
7
作者 Zhongnan Wang Wuyi Wang Guangyu Zhang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期62-65,共4页
The fretting wear is resulted from different or same sample's surfaces by the small variationand leads to mechanism failures. The main factors consist of the variation of normal load and oscillation frequencies,am... The fretting wear is resulted from different or same sample's surfaces by the small variationand leads to mechanism failures. The main factors consist of the variation of normal load and oscillation frequencies,among which surface topography of different materials are the main factors to the problems of the fretting wear.Therefore,a novel low-frequency reciprocating fretting wear test system is designed upon the principle of Friction coefficient measurement. Four metal and non-metallic samples are measured under various normal load and oscillation frequencies to obtain the instantaneous friction coefficient in the repeat experiments. In fact,the experimental results show that Co F curves of different samples with the increase of the normal load are the similar exponential decay or parabolic shapes,which are consistent with the literatures to verify the rational design and reliable-operation of the system under the conditions of different frequencies. 展开更多
关键词 fretting wear measuring-head reciprocating platform coefficient of friction oscillation frequency
下载PDF
Fretting wear of steel wires in hoisting ropes
8
作者 DekunZhang ShirongGe 《Journal of University of Science and Technology Beijing》 CSCD 2002年第2期81-84,共4页
To investigate the fretting wear of steel wires in hoisting ropes, specimenswere made of 6X19 point contact ropes. A model for the fretting ear was developed and a frettingwear test rig was deigned in laboratory. A se... To investigate the fretting wear of steel wires in hoisting ropes, specimenswere made of 6X19 point contact ropes. A model for the fretting ear was developed and a frettingwear test rig was deigned in laboratory. A series of experiments were performed on this test rig.The wear volume was taken as a characteristic parameter to describe the fretting wear in relation tothe contact load, reciprocating cycles and amplitude. Moreover, the wear mechanisms were discussedin the fretting process. 展开更多
关键词 fretting wear steel wires test rig MORPHOLOGY
下载PDF
Role of temperature in tribolayers in fretting wear ofγ-TiAl alloy
9
作者 Yulei YANG Hongfei SHANG +3 位作者 Huiping PEI Jimin XU Yi LIANG Minghui PAN 《Friction》 SCIE EI CAS CSCD 2024年第5期939-953,共15页
The formation of tribolayers may play significant influences on fretting wear.At elevated temperature,the adhesion among wear debris and the increased diffusion rate facilitate the formation of tribolayers.However,the... The formation of tribolayers may play significant influences on fretting wear.At elevated temperature,the adhesion among wear debris and the increased diffusion rate facilitate the formation of tribolayers.However,the intensification of oxidation at elevated temperature and the low diffusion rate in oxides may play an adverse role.The present study aims to investigate the role of temperature in tribolayers in fretting wear using aγ-TiAl alloy.Scanning electron microscope,energy dispersive spectrometer,Raman spectrometer,transmission electron microscope and nanoindentation were utilized to investigate the wear debris,tribolayers,and wear scars.The fretting tests showed that,compared with that at room temperature(RT)and 350℃,significant reduction in wear rate and decrease in the fluctuation of friction coefficient occurred at 550 and 750℃.It was further revealed that when temperature raised from room temperature(RT)to 750℃,the oxidation of the wear debris increased slightly and the diffusion coefficients increased prominently,which facilities the formation of well tribo-sintered tribolayers.The well tribo-sintered tribolayers presented homogenous structure,nanocrystalline grains with excellent mechanical properties,and resulted in the improvement in the fretting wear resistance of theγ-TiAl alloy at 550 and 750℃. 展开更多
关键词 TRIBOLAYER TEMPERATURE fretting wear γ-TiAl alloy
原文传递
Fretting wear behavior of Zr alloy cladding tube mated with Zr alloy dimple under mixed fretting regime in simulated primary water of PWR
10
作者 Yusheng Zhang Hongliang Ming +3 位作者 Jiang Lai Lixia Gao Jianqiu Wang En-Hou Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第27期43-52,共10页
The fretting wear behavior of Zr alloy cladding tube under mixed fretting regime in a high-temperature pressurized water was investigated.The main wear mechanism is adhesive wear,with characters of small-scale delamin... The fretting wear behavior of Zr alloy cladding tube under mixed fretting regime in a high-temperature pressurized water was investigated.The main wear mechanism is adhesive wear,with characters of small-scale delamination at the center of worn area and serious delamination on the worn edge.A long crack throughout the worn area and other cracks propagated towards the substrate are observed.The cross-sectional microstructure of worn area can be divided into a thick third-body layer,thin inner oxide layer and thick tribologically transformed structure layer,and their formation mechanisms are analyzed in detail.Finally,the mixed fretting regime process and the microstructural evolution during fretting wear are discussed. 展开更多
关键词 fretting wear Mixed fretting regime Zr alloy tube High temperature pressurized water Microstructure
原文传递
Effect of Normal Force on Fretting Wear Behavior of Zirconium Alloy Tube in Simulated Primary Water of PWR
11
作者 Yusheng Zhang Jiang Lai +3 位作者 Hongliang Ming Lixia Gao Jianqiu Wang En-Hou Han 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第5期865-880,共16页
The effect of normal force on fretting wear behavior of zirconium alloy tube mated with grid dimple in simulated primary water of pressurized water reactor nuclear power plant was investigated.Results showed that the ... The effect of normal force on fretting wear behavior of zirconium alloy tube mated with grid dimple in simulated primary water of pressurized water reactor nuclear power plant was investigated.Results showed that the maximum wear depth,wear volume and wear coefficient of Zr alloy tube in simulated primary water at 315℃ gradually increased with increasing normal force,while the friction coefficient gradually decreased.Fretting process could be divided into four stages according to the variation of friction coefficient during test.When normal force exceeds 30 N,the fretting regime would transition from gross slip regime to partial slip regime after 3×10^(7 )cycles.Delamination was aggravated with increasing normal force,while abrasive wear became slighter.A thicker third-body layer with monoclinic ZrO_(2) was formed by the tribo-sintering mechanism under higher normal force.In addition,the schematic evolution processes of delamination and third-body layer formation were displayed according to morphology observation. 展开更多
关键词 Zirconium alloy tube fretting wear Grid-to-rod High-temperature pressurized water Normal force
原文传递
EXPERIMENTAL STUDY OF FRETTING WEAR OF TITANIUM ALLOY BEFORE AND AFTER LASER BEAM QUENCHING 被引量:4
12
作者 Dai Zhendong, Tang Yaxing, Zhang Hong, Wang Min (Department of Mechanical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China) Yang Shenrong, Zhang Xueshou (Laboratory of Solid Lubrication, Lanzhou Institu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第3期48-53,共6页
The effects of amplitudes, normal loads and laser beam quenching on the fretting wear of titanium alloy (TC11) were experimentally investigated on SRV fretting wear test machine in air, at room temperature and without... The effects of amplitudes, normal loads and laser beam quenching on the fretting wear of titanium alloy (TC11) were experimentally investigated on SRV fretting wear test machine in air, at room temperature and without lubrication conditions. The purpose of this study is to learn the rules of fretting wear in a disk blades dovetail joint of an aircraft turbine so the test parameters are determined based on the relative movement and load in the joint. The wear depths are measured by a profilometer, the worn areas are observed and measured by an optical microscopy, and the microtopography of the worn scar is studied by scanning electron microscopy (SEM) .The tests and observations state clearly that fretting wear rate (FWR) is heavily influenced by sliding amplitude(SA) and load. In this experiment, if SA is greater than 60 μm at Hertz contact stress 105 MPa, the FWR is much higher, and the SEM makes it known that the wear mechanism is the combination of adhesive and contact fatigue in the above test conditions. In contrast, if SA smaller, the FWR lower too, and the SEM suggests that the major wear mechanism is contact fatigue. The experiments also reveal that the laser beam quenching greatly improve the fretting wear resistance of titanium alloy, especially at heavy load and large amplitude. 展开更多
关键词 fretting wear laser beams quenching (cooling) titanium alloys
下载PDF
Fretting wear behaviour of machined layer of nickel-based superalloy produced by creep-feed profile grinding 被引量:3
13
作者 Weijie KUANG Qing MIAO +4 位作者 Wenfeng DING Yanjun ZHAO Biao ZHAO Xuebing WEN Shaopeng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期401-411,共11页
Fretting wear has an adverse impact on the fatigue life of turbine blade roots.The current work is to comparatively investigate the fretting wear behaviour of the nickel-based superalloy surfaces produced by polishing... Fretting wear has an adverse impact on the fatigue life of turbine blade roots.The current work is to comparatively investigate the fretting wear behaviour of the nickel-based superalloy surfaces produced by polishing and creep-feed profile grinding,respectively,in terms of surface/subsurface fretting damage,the friction coefficient,wear volume and wear rate.Experimental results show that the granulated tribolayer aggravates the workpiece wear,while the flat compacted tribolayer enhances the wear resistance ability of workpiece,irrespective of whether the workpiece is processed by polishing or grinding.However,the wear behaviors of tribolayers are different.For the polished surface,when the normal load exceeds 100 N,the main defects are crack,rupture,delamination and peeling of workpiece materials;the wear mechanism changes from severe oxidative wear to fatigue wear and abrasive wear when the loads increase from 50 to 180 N.As for the ground surface,the main wear mechanism is abrasive wear.Particularly,the ground surface possesses better wear-resistant ability than the polished surface because the former has the lower values in coefficient friction(0.23),wear volume(0.06×10^(6)μm^(3))and wear rate(0.25×10^(-16)Pa^(-1)).Finally,an illustration is given to characterize the evolution of wear debris on such nickel-based superalloy on the ground surface. 展开更多
关键词 Creep-feed profile grinding fretting wear Nickel-based superalloy TRIBOLAYER wear debris
原文传递
Analysis of fretting wear behavior of unloading valve of gasoline direct injection high-pressure pump 被引量:2
14
作者 Liang LU Yin-peng XU +4 位作者 Meng-ru LI Qi-long XUE Man-yi ZHANG Liang-liang LIU Zhong-yu WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第4期314-328,共15页
The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical ... The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical unloading valve in the high-pressure pump.In previous study,the authors have analyzed the damage on the unloading valve and demonstrated that it is caused neither by static damage nor fatigue damage and have put forward the hypothesis of fretting wear.This paper is based on the establishment of the statically indeterminate structure of the unloading valve.The micro friction parameters(stress,friction coefficient,etc.)required for the numerical iterative calculation of fretting wear are calculated.In addition,based on the grid adaptive technology and a modified Archard wear model,the fretting wear is calculated quantitatively and is in good agreement with experimental results.Based on that verification,the wear laws of the valve ball and valve seat under the same hardness,different contact angles,and different assembly stresses,are analyzed in detail,and reasoned suggestions for the structural design and assembly design of the ball valve are given. 展开更多
关键词 fretting wear behavior Unloading valve Experimental and numerical analyses High pressure
原文传递
Friction and Wear Properties of High-velocity Oxygen Fuel Sprayed WC-17Co Coating under Rotational Fretting Conditions
15
作者 LUO Jun CAI Zhenbing +2 位作者 MO Jiliang PENG Jinfang ZHU Minhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期515-521,共7页
Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engin... Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed(HVOF) technique WC-17 Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope(SEM), energy dispersive X-ray spectroscopy(EDX), and X-ray diffractrometry(XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy(OM), and surface topography. The experimental results reveal that the WC-17 Co coating adjusted the boundary between the partial slip regime(PSR) and the slip regime(SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17 Co coating in prevention of rotational fretting wear. 展开更多
关键词 fretting wear rotational fretting WC-17Co coating LZ50 steel HVOF
下载PDF
HIGH-CURRENT PULSED ELECTRON BEAM: RAPID SURFACE ALLOYING AND WEAR RESISTANCE IMPROVEMENT
16
作者 J.Xu H.W.Liu +5 位作者 Z.R.Zhou C.Dong A.M.Wu S.Z.Hao A.M.Zhang T.Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第4期276-282,共7页
The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al ... The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al metal pre-coated with fine carbon powders prior to the bombardment, and the second alloy is the D2-Crl2MolVl mould steel pre-coated with Cr, Ti, and TiN powders. The surface elements diffuse about several micrometers into the substrate materials only after several bombardments. Tribological behaviors of these samples were characterized and significant improvement in wear resistance was found. Finally, a TEM analysis reveals the presence of stress waves generated by coupled thermal and stress fields, which was considered as the main cause of the enhanced properties. 展开更多
关键词 high-current pulsed electron beam surface alloying TRIBOLOGY fretting wear
下载PDF
EXPERIMENTAL STUDY ON HIGH-SPEED CHARACTERISTICS OF AUTOMOTIVE ENGINE OIL-PUMP CHAIN 被引量:8
17
作者 CHENG Yabing MENG Fanzhong +1 位作者 XU Hanxue WU Jianming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期36-39,共4页
The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the lig... The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the light-weight demand of engine. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine oil-pump chain is fatigue wear, and it's failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. Pin and bush both occurred cycle-soften phenomenon, and roller occurred cycle-harden. Fretting wear is one of the most important "fall to pieces" failure causes of automotive chain. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technology are the effective methods to increase its resistance to multi-cycle impact. 展开更多
关键词 Automotive engine oil-pump chain wear mechanism Cycle-soften Cycle-harden fretting wear Resistance to multi-cycle impact
下载PDF
Effect of wear debris on fretting fatigue crack initiation
18
作者 Shengjie WANG Tongyan YUE +1 位作者 Dagang WANG Magd ABDEL WAHAB 《Friction》 SCIE EI CAS CSCD 2022年第6期927-943,共17页
Both wear and fatigue occur in fretting condition,and they interact with one another during the whole process.Fretting fatigue is commonly analysed without considering the effect of wear in partial slip regime,althoug... Both wear and fatigue occur in fretting condition,and they interact with one another during the whole process.Fretting fatigue is commonly analysed without considering the effect of wear in partial slip regime,although wear affects the lifetime of crack initiation.This paper investigates,for the first time,the effect of wear debris on fretting fatigue crack initiation.To investigate the effect of debris,first fretting wear characteristics in partial slip regime are analysed for loading conditions.Then,the effect of wear on fretting fatigue crack initiation is investigated using Ruiz parameters and critical plane methods without considering the debris effect.Through the results,we can see that loading conditions affect the wear profiles in different ways.Moreover,wear has a significant effect on the fatigue in partial slip regime without considering debris especially on the crack initiation location.Finally,considering wear debris in the analysis,its effect on critical plane parameters is investigated.It is found that by considering the wear debris effect,the frtting fatigue crack initiation location is shifted towards the trailing edge.The predictions of both crack initiation location and lifetime show a good agreement with the experimental data. 展开更多
关键词 fretting wear fretting fatigue critical plane Ruiz parameter DEBRIS
原文传递
Impact–sliding fretting tribocorrosion behavior of 316L stainless steel in solution with different halide concentrations
19
作者 Xu MA Wei TAN +2 位作者 Remy BONZOM Xue MI Guorui ZHU 《Friction》 SCIE EI CAS CSCD 2023年第12期2310-2328,共19页
Impact–sliding caused by random vibrations between tubes and supports can affect the operation of heat exchangers.In addition,a corrosive environment can cause damage,accelerating the synergism of corrosion and wear.... Impact–sliding caused by random vibrations between tubes and supports can affect the operation of heat exchangers.In addition,a corrosive environment can cause damage,accelerating the synergism of corrosion and wear.Therefore,the focus of this work was the impact–sliding fretting tribocorrosion behavior of 316L heat exchanger tubes at different halide concentrations.A device system incorporating the in situ electrochemical measurements of impact–sliding fretting corrosion wear was constructed,and experiments on 316L heat exchanger tubes in sodium chloride(NaCl)solution with different concentrations(0.0,0.1,0.5,1.0,3.5,and 5.0 wt%)were carried out.The synergism between wear and corrosion was also calculated and analyzed.The wear and damage mechanisms were elucidated by correlating the corrosion–wear synergism,morphologies,and material loss rates.The results indicated that the stable wear stage occurred at approximately 9–12 h,after which the corrosion current increased with the expansion of the wear area.As the halide concentration increased,the scale of damage on the wear scars gradually decreased,changing from being dominated by cracks,delaminations,and grooves to being dominated by scratches,microgrooves,and holes.There was an obvious positive synergism between wear and corrosion.The material loss was dominated by pure mechanical wear and wear enhanced by corrosion,but corrosion enhanced by wear contributed more than tangential sliding fretting corrosion.The total mass loss increased gradually in the range of 0.0–0.5 wt%and decreased in the range of 0.5–5.0 wt%.Large-scale damage enhanced by corrosivity and small-scale damage reduced by lubricity dominated the material loss at low and high concentrations,respectively. 展开更多
关键词 impact-sliding fretting wear TRIBOCORROSION halide concentration 316L stainless steel
原文传递
A theoretical justification of the slip index concept in fretting analysis
20
作者 Ivan I.ARGATOV Young S.CHAI 《Friction》 SCIE EI CAS CSCD 2023年第7期1265-1275,共11页
Fretting in the partial-slip and gross-slip regimes under a constant normal load is considered.The tangential force-displacement relations for the forward and backward motions are described based the generalized Catta... Fretting in the partial-slip and gross-slip regimes under a constant normal load is considered.The tangential force-displacement relations for the forward and backward motions are described based the generalized Cattaneo-Mindlin theory of tangential contact and Masing's hypothesis on modelling the force-displacement hysteretic loop.Besides the critical force and displacement parameters(characterizing the triggering of sliding),the model includes one dimensionless fitting parameter that tunes the tangential contact stiffness of the friction-contact interface.Explicit expressions are derived for the main tribological parameters of the fretting loop,including the slip index and the signal index.The presented phenomenological modelling approach has been applied to the analysis of two sets of experimental data taken from the literature.It has been shown that the experimentally observed simple relation of a rational type between the slip index and the slip ratio corresponds to the gross-slip asymptotics of the corresponding model-based predicted relation.The known quantitative criteria for the transition from the partial slip regime to the gross slip regime are expressed in terms of the stiffness parameter,and a novel geometric transition criterion is formulated. 展开更多
关键词 fretting wear slip index signal index partial slip energy ratio
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部