A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial sa...A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial saliva were carried out under varied contact inclined angles (45° and 60°), and the maximum imposed load varied from 200 to 400 N at a constant loading speed of 6 mm/min. The effects of the cyclic vertical force and the inclined angle were investigated in detail. Dynamic analysis in combination with microscopic examinations shows that the wear scar and plastic deformation accumulation present a strong asymmetry. The Ti6Al7Nb has better wear resistance than TA2 in artificial saliva at the same test parameters, and with the increase of inclined angle and decrease of imposed load, the wear reduces accordingly. The wear mechanisms of pure titanium TA2 and Ti6Al7Nb alloy under the condition of dual motion fretting in artificial saliva are abrasive wear, oxidative wear and delamination.展开更多
To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder ...To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder as the cladding material.The microstructure,phase structure and properties of the coatings were analyzed by SEM,XRD,EPMA,TEM,hardness tester and fretting wear meter.It was observed that the outer ring of the network-like structure was mainly TiB strengthening phase,while the inner ring was α-Ti grain,and the interface between TiB and Ti matrix was very clean and had a consistent orientation relationship.The hardness of the cladding layer with network-like structure gradually decreased from the surface toward the interface,but the average hardness was nearly two times that of the substrate.In the fretting wear test,it was found that the wear resistance of the cladding layer with network-like structure was larger than that of the substrate under low load(40 N).The results revealed that the hardness and fretting wear resistance of the titanium-based composite coating could be improved by the introduction of network-like structure.展开更多
A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/s...A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.展开更多
通过径向微动的数值模拟,研究了径向微动磨损过程中的力学行为和损伤机理.以球(Si3N4)-平板(Vita Mark II)模型为研究对象,通过Hertz理论分析,得到球和平板的接触半径、法向分布力之间的关系.应用Ansys软件建立有限元模型,计算得到接触...通过径向微动的数值模拟,研究了径向微动磨损过程中的力学行为和损伤机理.以球(Si3N4)-平板(Vita Mark II)模型为研究对象,通过Hertz理论分析,得到球和平板的接触半径、法向分布力之间的关系.应用Ansys软件建立有限元模型,计算得到接触表面的应力、应变和滑移分布.研究结果表明:滑动区摩擦因数对粘着区应力、应变影响不大,但对滑动区应力、应变、滑移量造成的影响比较明显,必须考虑;采用弹性模量和泊松比相近的材料为对摩副时,可减小相对滑移量,降低磨损;在滑动区,特别是在接近接触边缘区域,滑移量较大,与实验结果吻合.展开更多
基金Project(81170996)supported by the National Natural Science Foundation of China
文摘A dual motion combined by radial and tangential fretting was achieved on a modified hydraulic fretting wear test rig. The dual motion fretting tests of medical pure titanium (TA2) and Ti6Al7Nb alloy in artificial saliva were carried out under varied contact inclined angles (45° and 60°), and the maximum imposed load varied from 200 to 400 N at a constant loading speed of 6 mm/min. The effects of the cyclic vertical force and the inclined angle were investigated in detail. Dynamic analysis in combination with microscopic examinations shows that the wear scar and plastic deformation accumulation present a strong asymmetry. The Ti6Al7Nb has better wear resistance than TA2 in artificial saliva at the same test parameters, and with the increase of inclined angle and decrease of imposed load, the wear reduces accordingly. The wear mechanisms of pure titanium TA2 and Ti6Al7Nb alloy under the condition of dual motion fretting in artificial saliva are abrasive wear, oxidative wear and delamination.
基金Projects(2019J01813,2018J01557) supported by the Natural Science Foundation of Fujian Province,ChinaProject(2018H0031) supported by the Guiding Science Program of Fujian Province,ChinaProject(2018GP2002) supported by the Science and Technology Program of Putian City,China
文摘To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder as the cladding material.The microstructure,phase structure and properties of the coatings were analyzed by SEM,XRD,EPMA,TEM,hardness tester and fretting wear meter.It was observed that the outer ring of the network-like structure was mainly TiB strengthening phase,while the inner ring was α-Ti grain,and the interface between TiB and Ti matrix was very clean and had a consistent orientation relationship.The hardness of the cladding layer with network-like structure gradually decreased from the surface toward the interface,but the average hardness was nearly two times that of the substrate.In the fretting wear test,it was found that the wear resistance of the cladding layer with network-like structure was larger than that of the substrate under low load(40 N).The results revealed that the hardness and fretting wear resistance of the titanium-based composite coating could be improved by the introduction of network-like structure.
基金Project(51271080) supported by the National Natural Science Foundation of ChinaProject(2012JSSPITP1968) supported by the Innovative Foundation for Students of Jiangsu Province,ChinaProject(CKJB201204) supported by the Innovation Fund of Nanjing Institute of Technology,China
文摘A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.
文摘通过径向微动的数值模拟,研究了径向微动磨损过程中的力学行为和损伤机理.以球(Si3N4)-平板(Vita Mark II)模型为研究对象,通过Hertz理论分析,得到球和平板的接触半径、法向分布力之间的关系.应用Ansys软件建立有限元模型,计算得到接触表面的应力、应变和滑移分布.研究结果表明:滑动区摩擦因数对粘着区应力、应变影响不大,但对滑动区应力、应变、滑移量造成的影响比较明显,必须考虑;采用弹性模量和泊松比相近的材料为对摩副时,可减小相对滑移量,降低磨损;在滑动区,特别是在接近接触边缘区域,滑移量较大,与实验结果吻合.