As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposi...As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number.展开更多
Rare earth compounds as modifiers used widely in modern friction materials can enhance the interfacial binding of constituents of materials and improve the comprehensive properties of materials evidently. However, the...Rare earth compounds as modifiers used widely in modern friction materials can enhance the interfacial binding of constituents of materials and improve the comprehensive properties of materials evidently. However, there are still few reports on application of rare earth in automotive friction materials. In order to study the effect mechanism of rare earths in friction materials, a rare earth compound was selected as additive and the effects of materials doped with or without rare earth on friction and wear properties of materials were studied. The microstructure and worn surface morphology were observed by scanning electron microscopy and the macro performance was discussed. Worn surface element constitution of materials was analyzed by energy dispersive spectroscopy. Effect mechanism of rare earths on friction and wear behaviors of friction materials were discussed. The results show that doping rare earths in friction materials can stabilize friction coefficient, lower the wear rate of materials and increase the impact strength of materials. The flexibility and fracture resistance of materials is greatly improved. Worn surface of materials doped with rare earth is compact and the surface adhesion is greatly enhanced.展开更多
Friction stir processing of AA6061-T4 alloy with SiC particles was successfully carried out.SiC particles were uniformly dispersed into an AA6061-T4 matrix.Also SiC particles promoted the grain refinement of the AA606...Friction stir processing of AA6061-T4 alloy with SiC particles was successfully carried out.SiC particles were uniformly dispersed into an AA6061-T4 matrix.Also SiC particles promoted the grain refinement of the AA6061-T4 matrix by FSP.The mean grain size of the stir zone (SZ) with the SiC particles was obviously smaller than that of the stir zone without the SiC particles.The microhardness of the SZ with the SiC particles reached about HV80 due to the grain refinement and the distribution of the SiC particles.展开更多
In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the qu...In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the quadratic regressional equations in terms of primary opening technologicalparameters and yarn quality for medium and fine count friction spinning. The results of analysisand discussion show that the proper choice of opening roller speed and its reasonable match withthe yarn count is singificant for ensuring the spinning quality index as well as reducing unevenness,thin and thick places of the yarn.展开更多
The influence of longitudinal and torsional bias stresses on anomalous amplitude-dependent internal friction was studied.The longitudinal bias stress may always weaken the anomalous amplitude-dependent effect,while th...The influence of longitudinal and torsional bias stresses on anomalous amplitude-dependent internal friction was studied.The longitudinal bias stress may always weaken the anomalous amplitude-dependent effect,while the torsional one may induce different effects from differ- ent directions applied.Bias stress effect exhibits only in properly heat treated and cold worked ahoy specimens.The anomalous amplitude-dependent internal friction peaks,P_3,P_2 and P_1, are found to be related closely to slant dislocation kink chains.Thus,the application of bias stress to internal friction would be contributed to the study on dislocation structure.展开更多
Consolidation of thermoplastic unidirectional(UD)lami-nate with friction spun core yarns was investigated,espe-cially the characterization of filament bundles in consoli-dation was analyzed.The results showed that the...Consolidation of thermoplastic unidirectional(UD)lami-nate with friction spun core yarns was investigated,espe-cially the characterization of filament bundles in consoli-dation was analyzed.The results showed that the bundleeffect was affected considerably by processing conditions(applied pressure and processing time).The boundaryof the bundles was disappeared under suitable processingconditions and finally an even fiber/resin distributioncould be attained.In consolidation,filament bundlesgetting close each other and resin flowing into the bundl-es occurred simultaneously,and eventually the bundleswere fully impregnated by the resin.Fiber packing den-sity in UD-laminate was the same as that of frictionspun core yarn(55%-65% in volume)and was not af-fected significantly by processing conditions under thecurrent experimental conditions.展开更多
Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neura...Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment.展开更多
基金Project supported by the National Basic Research Program of China(973 Program)(No.2014CB744802)the National Natural Science Foundation of China(No.11772194)
文摘As the Reynolds number increases, the skin friction has been identified as the dominant drag in many practical applications. In the present paper, the effects of the Reynolds number on the mean skin friction decomposition in turbulent channel flows up to Reτ= 5 200 are investigated based on two different methods, i.e., the FukagataIwamoto-Kasagi(FIK) identity(FUKAGATA, K., IWAMOTO, K., and KASAGI, N.Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.Physics of Fluids, 14(11), L73–L76(2002)) and the Renard-Deck(RD) identity(DECK,S., RENARD, N., LARAUFIE, R., and WEISS, P.′E. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to Reθ= 13 650.Journal of Fluid Mechanics, 743, 202–248(2014)). The direct numerical simulation(DNS) data provided by Lee and Moser(LEE, M. and MOSER, R. D. Direct numerical simulation of turbulent channel flow up to Reτ≈ 5 200. Journal of Fluid Mechanics,774, 395–415(2015)) are used. For these two skin friction decomposition methods, their decomposed constituents are discussed and compared for different Reynolds numbers.The integrands of the decomposed constituents are locally analyzed across the boundary layer to assess the actions associated with the inhomogeneity and multi-scale nature of turbulent motion. The scaling of the decomposed constituents and their integrands are presented. In addition, the boundary layer is divided into three sub-regions to evaluate the contributive proportion of each sub-region with an increase in the Reynolds number.
文摘Rare earth compounds as modifiers used widely in modern friction materials can enhance the interfacial binding of constituents of materials and improve the comprehensive properties of materials evidently. However, there are still few reports on application of rare earth in automotive friction materials. In order to study the effect mechanism of rare earths in friction materials, a rare earth compound was selected as additive and the effects of materials doped with or without rare earth on friction and wear properties of materials were studied. The microstructure and worn surface morphology were observed by scanning electron microscopy and the macro performance was discussed. Worn surface element constitution of materials was analyzed by energy dispersive spectroscopy. Effect mechanism of rare earths on friction and wear behaviors of friction materials were discussed. The results show that doping rare earths in friction materials can stabilize friction coefficient, lower the wear rate of materials and increase the impact strength of materials. The flexibility and fracture resistance of materials is greatly improved. Worn surface of materials doped with rare earth is compact and the surface adhesion is greatly enhanced.
基金Project(10038688)supported by the Fundamental R&D Program for Core Technology of Materials Funded by the Ministry of Knowledge Economy,Republic of Korea
文摘Friction stir processing of AA6061-T4 alloy with SiC particles was successfully carried out.SiC particles were uniformly dispersed into an AA6061-T4 matrix.Also SiC particles promoted the grain refinement of the AA6061-T4 matrix by FSP.The mean grain size of the stir zone (SZ) with the SiC particles was obviously smaller than that of the stir zone without the SiC particles.The microhardness of the SZ with the SiC particles reached about HV80 due to the grain refinement and the distribution of the SiC particles.
文摘In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the quadratic regressional equations in terms of primary opening technologicalparameters and yarn quality for medium and fine count friction spinning. The results of analysisand discussion show that the proper choice of opening roller speed and its reasonable match withthe yarn count is singificant for ensuring the spinning quality index as well as reducing unevenness,thin and thick places of the yarn.
文摘The influence of longitudinal and torsional bias stresses on anomalous amplitude-dependent internal friction was studied.The longitudinal bias stress may always weaken the anomalous amplitude-dependent effect,while the torsional one may induce different effects from differ- ent directions applied.Bias stress effect exhibits only in properly heat treated and cold worked ahoy specimens.The anomalous amplitude-dependent internal friction peaks,P_3,P_2 and P_1, are found to be related closely to slant dislocation kink chains.Thus,the application of bias stress to internal friction would be contributed to the study on dislocation structure.
文摘Consolidation of thermoplastic unidirectional(UD)lami-nate with friction spun core yarns was investigated,espe-cially the characterization of filament bundles in consoli-dation was analyzed.The results showed that the bundleeffect was affected considerably by processing conditions(applied pressure and processing time).The boundaryof the bundles was disappeared under suitable processingconditions and finally an even fiber/resin distributioncould be attained.In consolidation,filament bundlesgetting close each other and resin flowing into the bundl-es occurred simultaneously,and eventually the bundleswere fully impregnated by the resin.Fiber packing den-sity in UD-laminate was the same as that of frictionspun core yarn(55%-65% in volume)and was not af-fected significantly by processing conditions under thecurrent experimental conditions.
基金supported by the National Natural Science Foundation of China(61573078,61573147)the International S&T Cooperation Program of China(2014DFB70120)the State Key Laboratory of Robotics and System(SKLRS2015ZD06)
文摘Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment.