By friction heating single point incremental forming,truncated square pyramid parts with different draw angles of a magnesium alloy AZ31 B were formed at room temperature.Metallurgical,tensile and micro-hardness tests...By friction heating single point incremental forming,truncated square pyramid parts with different draw angles of a magnesium alloy AZ31 B were formed at room temperature.Metallurgical,tensile and micro-hardness tests were carried out to obtain the effects of wall angle on microstructure and mechanical properties. The results show that grain in side wall of the formed parts becomes refined significantly. Furthermore,with the increase of draw angle,grain size increases,but strength,hardness and plasticity decrease. In addition, surface roughness tests were performed on the formed surface to determine the influence of speed of forming tool. The results show that surface roughness has a little increase with the increase of tool rotational speed.展开更多
In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It...In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It has important value to study on the relationship between tribological performances of the liner and the friction heat. Unforttmately, up to now, published work on this relationship is quite scarce. Therefore, the effect of friction heat on the tribological performances of the liner was investigated in the present work. The tribological behaviors of the liner were evaluated by using the high temperature end surface wear tester. Scanning electron microscopy (SEM) was utilized to examine the morphologies of worn surfaces of the liner and study the failure modes. Differential scanning calorimetry (DSC) measurement and X-ray diffraction (XRD) analysis were performed to study the behaviors of the wear debris. The temperature rise on the worn surface was calculated according to classical models. SEM observation shows that the dominating wear mechanism for the liner is mainly affected by friction shear force, contact pressure and friction heat. Higher fusion heat for the wear debris than that for the pure polytetrafluroethylene (PTFE) indicates that the PTFE is the main portion of the wear debris, and, the PTFE in the wear debris shows a higher crystallisation degree owing to the effects of friction shear force and the friction heat. Combining the calculated temperature rise results with the wear rate of the liner, it can be concluded that the effects of temperature rise o n the tribological performances of the liner become more obvious when the temperature rise exceeds the glass transition temperature (Tg) of the PTFE. The wear resistance of the liner deteriorates dramatically when the temperature rise approaches to the melting point (Ton) of the PTFE. The tribological performances of the liner can be improved when the temperature rise exceeds Tg but is far lower than Ton- The present study on the relationship between the temperature rise and the tribological performances of the liner may provide the basis for further understanding of the wear mechanisms of the liner as well as the relationship between the formation of the PTFE transfer film and the friction heat during the dry-sliding of the Finer.展开更多
A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by hig...A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by high-intensity ultrasonic pulses. In the finite element model, the high-power ultrasonic transducer is modeled by using a piezoelectric thermal-analogy method, and the dynamical interaction between both crack faces is modeled using a contact-impact theory. In the simulations, the frictional heating taking place at the crack faces is quantitatively calculated by using finite element thermal-structural coupling analysis, especially, the influences of acoustic chaos to plate vibration and crack heating are calculated and analysed in detail. Meanwhile, the related ultrasonic infrared images are also obtained experimentally, and the theoretical simulation results are in agreement with that of the experiments. The results show that, by using the theoretical method, a good simulation of dynamic interaction and friction heating process of the crack faces under non-chaotic or chaotic sound excitation can be obtained.展开更多
The frictional performance of gaskets is greatly affected by frictional heat in operational mine hoists. Based on frictional mechanism and heat transfer theory, the mathematical model of the temperature field of the P...The frictional performance of gaskets is greatly affected by frictional heat in operational mine hoists. Based on frictional mechanism and heat transfer theory, the mathematical model of the temperature field of the PVC gasket in an operational mine hoist was investigated, a numerical simulation using ANSYS is presented and the distribution of the temperature and heat flux were studied under basic assumptions. The results show that the temperature gradually decreases as the radius of the model increases and the isotherms are arcs of concentric semi-circle. The heat flux is of bilateral symmetry in the model and decreases radially. The theoretical values correspond with the measured values for a short time (τ≤ 100 s) when the steel wire rope slides.展开更多
Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature fiel...Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature field, but few literatures focus on wheel-rail thermal stress caused by frictional heating. However, the wheel-rail creepage is one of important influencing factors of the thermal stress In this paper, a thermo-mechanical coupling model of wheel-rail rolling-sliding contact is developed using thermo-elasto-plastic finite element method. The effect of the wheel-rail elastic creepage on the distribution of heat flux is investigated using the numerical model in which the temperature-dependent material properties are taken into consideration. The moving wheel-rail contact force and the frictional heating are used to simulate the wheel rolling on the rail. The effect of the creepage on the temperature rise, thermal strain, residual stress and residual strain under wheel-rail sliding-rolling contact are investigated. The investigation results show that the thermally affected zone exists mainly in a very thin layer of material near the rail contact surface during the rolling-sliding contact. Both the temperature and thermal strain of rail increase with increasing creepage. The residual stresses induced by the frictional heat in the surface layer of rail appear to be tensile. When the creepage is large, the frictional heat has a significant influence on the residual stresses and residual strains of rail. This paper develops a thermo-meehanical coupling model of wheel-rail rolling-sliding contact, and the obtained results can help to understand the mechanism of wheel/rail frictional thermal fatigue.展开更多
This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-el...This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.展开更多
Using high strength steel and ultra-high strength steel in hot stamping and automobile parts is one of the most important ways of the automobile lightweight,which is the development trend of automobiles currently.In t...Using high strength steel and ultra-high strength steel in hot stamping and automobile parts is one of the most important ways of the automobile lightweight,which is the development trend of automobiles currently.In this paper, the development of test device for heat friction coefficient by high strength steel can provide important technical parameters for hot stamping process,making the right selection of equipment types,mold design,technology optimization,and research and development of lubrication medium of press forming.At the same time,the experiments indicate that the instrument has not only accurate test result but also good repeatability.展开更多
By detecting and analyzing the variations of energy parameters-torque and temperature field during friction welding, this paper describes that during quasi-stationary heating phase, quite a little mechanical work is t...By detecting and analyzing the variations of energy parameters-torque and temperature field during friction welding, this paper describes that during quasi-stationary heating phase, quite a little mechanical work is transformed into plastic deformation work, thus the efficiency of heat excited by friction is low.展开更多
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an...Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.展开更多
In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization...In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization,which is potentially an important cause of high-speed catastrophic landslides.The key to the construction of this numerical ring shear model is to realize the THM(thermo-hydro-mechanical)dynamic coupling of soil particles,which includes the processes of frictional heating,thermal pressurization,and strength softening during shearing of solid particles.All of these are completed by using discrete element method.Based on this new model,the characteristics of shear stress change with shear displacement,as well as the variation of temperature and pore pressure in the specimen,are studied at shear rates of 0.055 m/s,0.06 m/s,0.109 m/s and 1.09 m/s,respectively.The results show that the peak strength and residual strength of specimen are significantly reduced when the mechanism of frictioninduced thermal pressurization is considered.The greater the shear rate is,the higher the temperature as well as the pore pressure is.The effect of shear rate on the shear strength is bidirectional.The simulation results demonstrate that this model can effectively simulate the mechanism of friction-induced thermal pressurization of shear band soil during ring shear process,and the shear strength softening in the process.The new numerical ring shear model established in this study is of great significance for studying the dynamic mechanism of high-speed catastrophic landslides.展开更多
The disk-pad brake used in automobile is divided i nt o two parts: the disk, geometrically axisymmetric, and the pad, of which the geo metry is three-dimensional. In the course of braking, all parameters of the pro ce...The disk-pad brake used in automobile is divided i nt o two parts: the disk, geometrically axisymmetric, and the pad, of which the geo metry is three-dimensional. In the course of braking, all parameters of the pro cesses (velocity, load, temperature, physicomechanical and tribological characte ristics of materials of the couple, and conditions of contacts) vary with the ti me. Considerable evidence has show that the contact temperature is an integral f actor reflecting the specific power friction influence at the combined effect of load, speed, friction coefficient, thermo physical and durability properties of materials of a frictional couple. Furthermore, the physic mechanical state of t he interface of the disk and pads is determined not only by the contact temperat ure but also by the nonstationary temperature field. Using the two-dimensional model for thermal analysis implies that the contact conditions and frictiona l heat flux transfer are independent of θ. This may lead to false thermal elast ic distortions and unrealistic contact conditions. An analytical model is presen ted in this paper for the determination of contact temperature distribution on t he working surface of a brake. To consider the effects of the moving heat source (the pad) with relative sliding speed variation, a transient finite element tec hnique is used to characterize the temperature fields of the solid rotor with ap propriate thermal boundary conditions. And the transient heat conduction problem can be solved as a nominal 3-D transient heat transfer problem with an immovab le heat source. Numerical results shows that the operating characteristics of th e brake exert an essentially influence on the surface temperature distribution a nd the maximal contact temperature. The temperature field presents a noaxisymmet ric characteristic (a function of θ) and proves to be strongly localized and po ssesses a sharp gradient in both axial and radial directions.展开更多
The effect of the design parameter on the clutch engagement process of the hydro-mechanical continuously variable transmission(CVT)was investigated.First,the model of the power train was developed with the software of...The effect of the design parameter on the clutch engagement process of the hydro-mechanical continuously variable transmission(CVT)was investigated.First,the model of the power train was developed with the software of SimulationX,and the clutch shift experiment was used to validate the correctness of the model.Then,the friction coefficient function was fitted with the test data to get the friction coefficient model suitable for this paper.Finally,based on the evaluating index of the friction torque and the friction power,two groups of design parameters(oil pressure and friction coefficient)were simulated and explained the changing regulation theoretically.According to the simulation results,the high oil pressure and friction coefficient can reduce the slipping time.The large oil pressure can increase the peak torque but the effect of friction coefficient on the peak torque is not so significant.The friction power reaches the maximum value at 3.2 s,the peak value increases as the oil pressure and friction coefficient increase.The effect of the oil pressure on the clutch engagement and thermal performance is greater than the friction coefficient.展开更多
This paper is concerned with the stationary plane contact of an insulated rigid punch and a half-space which is elastically anisotropic but thermally conducting. The frictional heat generation inside the contact regio...This paper is concerned with the stationary plane contact of an insulated rigid punch and a half-space which is elastically anisotropic but thermally conducting. The frictional heat generation inside the contact region due to the sliding of the punch over the half-space surface and the heat radiation outside the contact region are taken into account. With the help of Fourier integral transform, the problem is reduced to a system of two singular integral equations. The equations are solved numerically by using Gauss-Jacobi and trapezoidal-rule quadratures. The effects of anisotropy and thermal effects are shown graphically.展开更多
In the last few years,substantial experimental simulation and mumerical modelling hare been carried out in IMMPETUS to characterise the interfacial heat transfer and friction conditions during hot forging and rolling ...In the last few years,substantial experimental simulation and mumerical modelling hare been carried out in IMMPETUS to characterise the interfacial heat transfer and friction conditions during hot forging and rolling of steels. Emphasis has been placed on the influence of the oxide scale which forms on the steel workpiece. In the present paper, the experimental methods used for investigating interfacial heat transfer and friction conditions are described. Theses include hot flat rolling of steel slabs and hot axi- symmetric forging of steel cylinders and rings.Temperature measurements and computations demon- strate that for similar conditions, similar conditions, the effective interfacial heat transfer coefficients (IHTC) derived for hot rolling are significantly higher than those for forging, mainly due to the contribution of scale cracking during rolling. On the basis of experimental observations and numerical analysis,physical models for interfacial heat transfer in forging and rolling have been established. In addition, hot' sandwich' rolling and hot tensile tests with finite element modelling have been carried out to evaluate the hot ductility of the oxide scale.The results indicate that the defomation, cracking and decohesion behaviour of the oxide scale depend on deformation temperature, strain and relative strengths of the scale layer and scale - steel interface.Finaly, friction results from hot ring compression tests and from hot rolling with forward/backward slip measurements are reported.展开更多
The Jilin H5 chondrite, the largest known stony meteorite in the world, with its No.1 fragment weighing1770 kg. It contains submillimeter-to centimeter-sized FeNi metal particles/nodules. Our optical microscopic and e...The Jilin H5 chondrite, the largest known stony meteorite in the world, with its No.1 fragment weighing1770 kg. It contains submillimeter-to centimeter-sized FeNi metal particles/nodules. Our optical microscopic and electron microprobe analyses revealed that the formation of metal nodules in this meteorite is a complex and long-term process, The early stage is the thermal diffusion-caused migration and concentration of dispersed metallic material along fractures to form root-hair shaped metal grains during thermal metamorphism of this meteorite. The later two collision events experienced by this meteorite led to the further migration and aggregation of metallic material into the shock-produced cracks and openings to form largersized metal grains. The shock-produced shear movement and frictional heating occurred in this meteorite greatly enhanced the migration and aggregation of metallic material to form the large-sized nodules. It was revealed that the metal nodule formation process in the Jilin H5 chondrite might perform in the solid or subsolidus state, and neither melting of chondritic metal grains nor shock-induced vaporization of bulk chondrite material are related with this process.展开更多
Braking efficiency is characterized by reduced braking time and distance,and therefore passenger safety depends on the design of the braking system.During the braking of a vehicle,the braking system must dissipate the...Braking efficiency is characterized by reduced braking time and distance,and therefore passenger safety depends on the design of the braking system.During the braking of a vehicle,the braking system must dissipate the kinetic energy by transforming it into heat energy.A too high temperature can lead to an almost total loss of braking efficiency.An excessive rise in brake temperature can also cause surface cracks extending to the outside edge of the drum friction surface.Heat transfer and temperature gradient,not to forget the vehicle’s travel environment(high speed,heavy load,and steeply sloping road conditions),must thus be the essential criteria for any brake system design.The aim of the present investigation is to analyze the thermal behavior of different brake drum designs during the single emergency braking of a heavy-duty vehicle on a steeply sloping road.The calculation of the temperature field is performed in transient mode using a three-dimensional finite element model assuming a constant coefficient of friction.In this study,the influence of geometrical brake drum configurations on the thermal behavior of brake drums with two different materials in grey cast iron FG200 and aluminum alloy 356.0 reinforced with silicon carbide(SiC)particles is analyzed under extreme vehicle braking conditions.The numerical simulation results obtained using FE software ANSYS are qualitatively compared with the results already published in the literature.展开更多
The article presents an experimental and numerical study on thermal performance enhancement in a constant heatfluxed square-duct inserted diagonally with 45° discrete V-finned tapes(DFT).The experiments were carr...The article presents an experimental and numerical study on thermal performance enhancement in a constant heatfluxed square-duct inserted diagonally with 45° discrete V-finned tapes(DFT).The experiments were carried out by varying the airflow rate through the tested square duct with DFT inserts for Reynolds number from 4000 to 25000.The effect of the DFT with V-tip pointing upstream at various relative fin heights and pitches on heat transfer and pressure drop characteristics was experimentally investigated.Both the heat transfer and pressure drop were presented in terms of Nusselt number and friction factor respectively.Several V-finned tape characteristics were introduced such as fin- to duct-height ratio or blockage ratio(R_B=e/H = 0.075,0.1,0.15 and 0.2),fin pitch to duct height ratio(R_P= P/H=0.5,1.0,1.5 and 2.0) and fin attack angle,α = 45°.The experimental results reveal that the heat transfer and friction factor values with DFT inserts increase with the increment of R_B but the decrease of R_P.The inserted square-duct at R_B = 0.2 and R_P = 0.5 provides the highest heat transfer and friction factor while the one with R_B= 0.1 and R_P= 1.5 yields the highest thermal performance.Also,a numerical simulation was conducted to investigate the flow structure and heat transfer mechanism inside the tested duct with DFT inserts.展开更多
In this study, the thermo-elastic effects of frictional heat generation in a disc brake system due to braking actions were simulated. The mathematical model that defined the problem was developed from the kinetic and ...In this study, the thermo-elastic effects of frictional heat generation in a disc brake system due to braking actions were simulated. The mathematical model that defined the problem was developed from the kinetic and potential energies of moving vehicles on the gradient surfaces. This problem was solved for the selected geometry of disc brake and pad with their material properties selected from existing literatures using the finite element method and the computational results were obtained. The thermal deformation obtained was in good agreement with similar literature results. Also, for the same braking period and conditions, the results showed that a vehicle ascending a hill gave a higher temperature rise, Von Mises stress and thermal deformation on brake contact surfaces than when descending hill. Therefore, the braking period required to bring a moving vehicle in ascendent motion to a lower speed is expected to be shorter because of the gravity effect than horizontal motion, while descendent motion requires longer braking period.展开更多
In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,s...In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,such as magnesium alloy,could be deformed by RISF without additional heating. The objective of this study is to investigate the effects of forming parameters,namely,tool rotational speed,feed-rate,step size and wall angle,on the local temperature rise. Using response surface methodology and central composite design( CCD) experimental design,the significance,sequence of parameters and regression models would be analyzed with AZ31 B as the experimental material,and 3D response surface plots would be shown. Combined with actual processing conditions,the measures to improve the local temperature rise by modifying each parameter would be discussed in the end. The results showed that hierarchy of the parameters with respect to the significance of their effects on the local temperature at the side wall was: feed-rate,step size,and rotational speed,while at the bottom it was: feed-rate,step size,wall angle, and rotational speed, and no significant interaction appeared. It was found that the most significant parameter was not rotational speed,but feed-rate,followed by step size,for both test positions. In addition, the local temperature would increase by elevating step size,wall angle,rotating rate,and bringing down of feed-rate.展开更多
The tribological behaviors of two types of seal coatings, nickel-graphite and aluminum-hexagon-boron nitride (Ni-Cg and Al-hBN, respectively) versus a Ti-6Al-4V blade used in turbofan engines were investigated using a...The tribological behaviors of two types of seal coatings, nickel-graphite and aluminum-hexagon-boron nitride (Ni-Cg and Al-hBN, respectively) versus a Ti-6Al-4V blade used in turbofan engines were investigated using a high-speed rubbing test. The wear status and damage mechanism of the friction couples were studied and the abradability of the seal coatings was evaluated. By analysis of the coating properties and damage mechanism of the seal couple, the friction heat effect was identified as the key factor influencing blade wear forms as well as coating abradability. A one-dimensional heat conduction model was established to estimate the effect of increasing temperature on the friction interface. The results indicated that in the Ni-Cg and Ti-6Al-4V seal couple, the temperature rising rate (TRR) of the Ti-6Al-4V blade was faster than that of the Ni-Cg coating, and so the Ti-6Al-4V blade softened earlier than the Ni-Cg coating, causing the blade to suffer severe wear. In the Al-hBN and Ti-6Al-4V seal couple, the TRR of the Ti-6Al-4V blade was slower than that of the Al-hBN coating, and so the Al-hBN coating softened first; thus, blade damage was reduced or even replaced by coating adhesion. The square root ratio of thermal diffusivity between the blade and the coating could be taken as an indicator of the ratio of TRR between the blade and coating to predict blade wear status as well as damage mechanism. The results of the model agreed well with the experiment results of the two seal couples used in this study.展开更多
基金National Natural Science Foundation of China(No.51205217)
文摘By friction heating single point incremental forming,truncated square pyramid parts with different draw angles of a magnesium alloy AZ31 B were formed at room temperature.Metallurgical,tensile and micro-hardness tests were carried out to obtain the effects of wall angle on microstructure and mechanical properties. The results show that grain in side wall of the formed parts becomes refined significantly. Furthermore,with the increase of draw angle,grain size increases,but strength,hardness and plasticity decrease. In addition, surface roughness tests were performed on the formed surface to determine the influence of speed of forming tool. The results show that surface roughness has a little increase with the increase of tool rotational speed.
文摘In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It has important value to study on the relationship between tribological performances of the liner and the friction heat. Unforttmately, up to now, published work on this relationship is quite scarce. Therefore, the effect of friction heat on the tribological performances of the liner was investigated in the present work. The tribological behaviors of the liner were evaluated by using the high temperature end surface wear tester. Scanning electron microscopy (SEM) was utilized to examine the morphologies of worn surfaces of the liner and study the failure modes. Differential scanning calorimetry (DSC) measurement and X-ray diffraction (XRD) analysis were performed to study the behaviors of the wear debris. The temperature rise on the worn surface was calculated according to classical models. SEM observation shows that the dominating wear mechanism for the liner is mainly affected by friction shear force, contact pressure and friction heat. Higher fusion heat for the wear debris than that for the pure polytetrafluroethylene (PTFE) indicates that the PTFE is the main portion of the wear debris, and, the PTFE in the wear debris shows a higher crystallisation degree owing to the effects of friction shear force and the friction heat. Combining the calculated temperature rise results with the wear rate of the liner, it can be concluded that the effects of temperature rise o n the tribological performances of the liner become more obvious when the temperature rise exceeds the glass transition temperature (Tg) of the PTFE. The wear resistance of the liner deteriorates dramatically when the temperature rise approaches to the melting point (Ton) of the PTFE. The tribological performances of the liner can be improved when the temperature rise exceeds Tg but is far lower than Ton- The present study on the relationship between the temperature rise and the tribological performances of the liner may provide the basis for further understanding of the wear mechanisms of the liner as well as the relationship between the formation of the PTFE transfer film and the friction heat during the dry-sliding of the Finer.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574073)
文摘A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by high-intensity ultrasonic pulses. In the finite element model, the high-power ultrasonic transducer is modeled by using a piezoelectric thermal-analogy method, and the dynamical interaction between both crack faces is modeled using a contact-impact theory. In the simulations, the frictional heating taking place at the crack faces is quantitatively calculated by using finite element thermal-structural coupling analysis, especially, the influences of acoustic chaos to plate vibration and crack heating are calculated and analysed in detail. Meanwhile, the related ultrasonic infrared images are also obtained experimentally, and the theoretical simulation results are in agreement with that of the experiments. The results show that, by using the theoretical method, a good simulation of dynamic interaction and friction heating process of the crack faces under non-chaotic or chaotic sound excitation can be obtained.
基金Projects 50225519 supported by the National Outstanding Youth Science Foundation of China0E4458 by the Youth Science Foundation of China Univer-sity of Mining and Technology
文摘The frictional performance of gaskets is greatly affected by frictional heat in operational mine hoists. Based on frictional mechanism and heat transfer theory, the mathematical model of the temperature field of the PVC gasket in an operational mine hoist was investigated, a numerical simulation using ANSYS is presented and the distribution of the temperature and heat flux were studied under basic assumptions. The results show that the temperature gradually decreases as the radius of the model increases and the isotherms are arcs of concentric semi-circle. The heat flux is of bilateral symmetry in the model and decreases radially. The theoretical values correspond with the measured values for a short time (τ≤ 100 s) when the steel wire rope slides.
基金supported by National Natural Science Foundation of China(Grant Nos.51175438,U1134202)National Science and Technology Support Program of China(Grant No.2009BAG12A01)Program for New Century Excellent Talents in University of China(Grant No.NCET-08-0824)
文摘Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature field, but few literatures focus on wheel-rail thermal stress caused by frictional heating. However, the wheel-rail creepage is one of important influencing factors of the thermal stress In this paper, a thermo-mechanical coupling model of wheel-rail rolling-sliding contact is developed using thermo-elasto-plastic finite element method. The effect of the wheel-rail elastic creepage on the distribution of heat flux is investigated using the numerical model in which the temperature-dependent material properties are taken into consideration. The moving wheel-rail contact force and the frictional heating are used to simulate the wheel rolling on the rail. The effect of the creepage on the temperature rise, thermal strain, residual stress and residual strain under wheel-rail sliding-rolling contact are investigated. The investigation results show that the thermally affected zone exists mainly in a very thin layer of material near the rail contact surface during the rolling-sliding contact. Both the temperature and thermal strain of rail increase with increasing creepage. The residual stresses induced by the frictional heat in the surface layer of rail appear to be tensile. When the creepage is large, the frictional heat has a significant influence on the residual stresses and residual strains of rail. This paper develops a thermo-meehanical coupling model of wheel-rail rolling-sliding contact, and the obtained results can help to understand the mechanism of wheel/rail frictional thermal fatigue.
文摘This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.
基金National Science and Technology Supporting Program of China(No.2011BAG03B02)
文摘Using high strength steel and ultra-high strength steel in hot stamping and automobile parts is one of the most important ways of the automobile lightweight,which is the development trend of automobiles currently.In this paper, the development of test device for heat friction coefficient by high strength steel can provide important technical parameters for hot stamping process,making the right selection of equipment types,mold design,technology optimization,and research and development of lubrication medium of press forming.At the same time,the experiments indicate that the instrument has not only accurate test result but also good repeatability.
文摘By detecting and analyzing the variations of energy parameters-torque and temperature field during friction welding, this paper describes that during quasi-stationary heating phase, quite a little mechanical work is transformed into plastic deformation work, thus the efficiency of heat excited by friction is low.
基金Supported by the National Natural Science Foundation of China(11472093 and21276056)
文摘Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.
基金financed by the Research Foundation of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(Grant No.2020KDZ05)the National Natural Science Foundation of China(Grant Nos.42077239,41702378)。
文摘In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization,which is potentially an important cause of high-speed catastrophic landslides.The key to the construction of this numerical ring shear model is to realize the THM(thermo-hydro-mechanical)dynamic coupling of soil particles,which includes the processes of frictional heating,thermal pressurization,and strength softening during shearing of solid particles.All of these are completed by using discrete element method.Based on this new model,the characteristics of shear stress change with shear displacement,as well as the variation of temperature and pore pressure in the specimen,are studied at shear rates of 0.055 m/s,0.06 m/s,0.109 m/s and 1.09 m/s,respectively.The results show that the peak strength and residual strength of specimen are significantly reduced when the mechanism of frictioninduced thermal pressurization is considered.The greater the shear rate is,the higher the temperature as well as the pore pressure is.The effect of shear rate on the shear strength is bidirectional.The simulation results demonstrate that this model can effectively simulate the mechanism of friction-induced thermal pressurization of shear band soil during ring shear process,and the shear strength softening in the process.The new numerical ring shear model established in this study is of great significance for studying the dynamic mechanism of high-speed catastrophic landslides.
文摘The disk-pad brake used in automobile is divided i nt o two parts: the disk, geometrically axisymmetric, and the pad, of which the geo metry is three-dimensional. In the course of braking, all parameters of the pro cesses (velocity, load, temperature, physicomechanical and tribological characte ristics of materials of the couple, and conditions of contacts) vary with the ti me. Considerable evidence has show that the contact temperature is an integral f actor reflecting the specific power friction influence at the combined effect of load, speed, friction coefficient, thermo physical and durability properties of materials of a frictional couple. Furthermore, the physic mechanical state of t he interface of the disk and pads is determined not only by the contact temperat ure but also by the nonstationary temperature field. Using the two-dimensional model for thermal analysis implies that the contact conditions and frictiona l heat flux transfer are independent of θ. This may lead to false thermal elast ic distortions and unrealistic contact conditions. An analytical model is presen ted in this paper for the determination of contact temperature distribution on t he working surface of a brake. To consider the effects of the moving heat source (the pad) with relative sliding speed variation, a transient finite element tec hnique is used to characterize the temperature fields of the solid rotor with ap propriate thermal boundary conditions. And the transient heat conduction problem can be solved as a nominal 3-D transient heat transfer problem with an immovab le heat source. Numerical results shows that the operating characteristics of th e brake exert an essentially influence on the surface temperature distribution a nd the maximal contact temperature. The temperature field presents a noaxisymmet ric characteristic (a function of θ) and proves to be strongly localized and po ssesses a sharp gradient in both axial and radial directions.
基金Project(CX(19)3081)supported by the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province,ChinaProject(BE2018127)supported by the Key Research and Development Program of Jiangsu Province,China。
文摘The effect of the design parameter on the clutch engagement process of the hydro-mechanical continuously variable transmission(CVT)was investigated.First,the model of the power train was developed with the software of SimulationX,and the clutch shift experiment was used to validate the correctness of the model.Then,the friction coefficient function was fitted with the test data to get the friction coefficient model suitable for this paper.Finally,based on the evaluating index of the friction torque and the friction power,two groups of design parameters(oil pressure and friction coefficient)were simulated and explained the changing regulation theoretically.According to the simulation results,the high oil pressure and friction coefficient can reduce the slipping time.The large oil pressure can increase the peak torque but the effect of friction coefficient on the peak torque is not so significant.The friction power reaches the maximum value at 3.2 s,the peak value increases as the oil pressure and friction coefficient increase.The effect of the oil pressure on the clutch engagement and thermal performance is greater than the friction coefficient.
文摘This paper is concerned with the stationary plane contact of an insulated rigid punch and a half-space which is elastically anisotropic but thermally conducting. The frictional heat generation inside the contact region due to the sliding of the punch over the half-space surface and the heat radiation outside the contact region are taken into account. With the help of Fourier integral transform, the problem is reduced to a system of two singular integral equations. The equations are solved numerically by using Gauss-Jacobi and trapezoidal-rule quadratures. The effects of anisotropy and thermal effects are shown graphically.
文摘In the last few years,substantial experimental simulation and mumerical modelling hare been carried out in IMMPETUS to characterise the interfacial heat transfer and friction conditions during hot forging and rolling of steels. Emphasis has been placed on the influence of the oxide scale which forms on the steel workpiece. In the present paper, the experimental methods used for investigating interfacial heat transfer and friction conditions are described. Theses include hot flat rolling of steel slabs and hot axi- symmetric forging of steel cylinders and rings.Temperature measurements and computations demon- strate that for similar conditions, similar conditions, the effective interfacial heat transfer coefficients (IHTC) derived for hot rolling are significantly higher than those for forging, mainly due to the contribution of scale cracking during rolling. On the basis of experimental observations and numerical analysis,physical models for interfacial heat transfer in forging and rolling have been established. In addition, hot' sandwich' rolling and hot tensile tests with finite element modelling have been carried out to evaluate the hot ductility of the oxide scale.The results indicate that the defomation, cracking and decohesion behaviour of the oxide scale depend on deformation temperature, strain and relative strengths of the scale layer and scale - steel interface.Finaly, friction results from hot ring compression tests and from hot rolling with forward/backward slip measurements are reported.
基金financially supported by the Science and Technology Planning Project of Guangdong Province,China, 2020B1212060055。
文摘The Jilin H5 chondrite, the largest known stony meteorite in the world, with its No.1 fragment weighing1770 kg. It contains submillimeter-to centimeter-sized FeNi metal particles/nodules. Our optical microscopic and electron microprobe analyses revealed that the formation of metal nodules in this meteorite is a complex and long-term process, The early stage is the thermal diffusion-caused migration and concentration of dispersed metallic material along fractures to form root-hair shaped metal grains during thermal metamorphism of this meteorite. The later two collision events experienced by this meteorite led to the further migration and aggregation of metallic material into the shock-produced cracks and openings to form largersized metal grains. The shock-produced shear movement and frictional heating occurred in this meteorite greatly enhanced the migration and aggregation of metallic material to form the large-sized nodules. It was revealed that the metal nodule formation process in the Jilin H5 chondrite might perform in the solid or subsolidus state, and neither melting of chondritic metal grains nor shock-induced vaporization of bulk chondrite material are related with this process.
文摘Braking efficiency is characterized by reduced braking time and distance,and therefore passenger safety depends on the design of the braking system.During the braking of a vehicle,the braking system must dissipate the kinetic energy by transforming it into heat energy.A too high temperature can lead to an almost total loss of braking efficiency.An excessive rise in brake temperature can also cause surface cracks extending to the outside edge of the drum friction surface.Heat transfer and temperature gradient,not to forget the vehicle’s travel environment(high speed,heavy load,and steeply sloping road conditions),must thus be the essential criteria for any brake system design.The aim of the present investigation is to analyze the thermal behavior of different brake drum designs during the single emergency braking of a heavy-duty vehicle on a steeply sloping road.The calculation of the temperature field is performed in transient mode using a three-dimensional finite element model assuming a constant coefficient of friction.In this study,the influence of geometrical brake drum configurations on the thermal behavior of brake drums with two different materials in grey cast iron FG200 and aluminum alloy 356.0 reinforced with silicon carbide(SiC)particles is analyzed under extreme vehicle braking conditions.The numerical simulation results obtained using FE software ANSYS are qualitatively compared with the results already published in the literature.
基金Supported by the Energy Policy and Planning Office,Ministry of Energy,Thailand
文摘The article presents an experimental and numerical study on thermal performance enhancement in a constant heatfluxed square-duct inserted diagonally with 45° discrete V-finned tapes(DFT).The experiments were carried out by varying the airflow rate through the tested square duct with DFT inserts for Reynolds number from 4000 to 25000.The effect of the DFT with V-tip pointing upstream at various relative fin heights and pitches on heat transfer and pressure drop characteristics was experimentally investigated.Both the heat transfer and pressure drop were presented in terms of Nusselt number and friction factor respectively.Several V-finned tape characteristics were introduced such as fin- to duct-height ratio or blockage ratio(R_B=e/H = 0.075,0.1,0.15 and 0.2),fin pitch to duct height ratio(R_P= P/H=0.5,1.0,1.5 and 2.0) and fin attack angle,α = 45°.The experimental results reveal that the heat transfer and friction factor values with DFT inserts increase with the increment of R_B but the decrease of R_P.The inserted square-duct at R_B = 0.2 and R_P = 0.5 provides the highest heat transfer and friction factor while the one with R_B= 0.1 and R_P= 1.5 yields the highest thermal performance.Also,a numerical simulation was conducted to investigate the flow structure and heat transfer mechanism inside the tested duct with DFT inserts.
文摘In this study, the thermo-elastic effects of frictional heat generation in a disc brake system due to braking actions were simulated. The mathematical model that defined the problem was developed from the kinetic and potential energies of moving vehicles on the gradient surfaces. This problem was solved for the selected geometry of disc brake and pad with their material properties selected from existing literatures using the finite element method and the computational results were obtained. The thermal deformation obtained was in good agreement with similar literature results. Also, for the same braking period and conditions, the results showed that a vehicle ascending a hill gave a higher temperature rise, Von Mises stress and thermal deformation on brake contact surfaces than when descending hill. Therefore, the braking period required to bring a moving vehicle in ascendent motion to a lower speed is expected to be shorter because of the gravity effect than horizontal motion, while descendent motion requires longer braking period.
基金National Natural Science Foundation of China(No.51205217)the Project of Shandong Province Higher Educational Science and Technology Program,China(No.J10LD13)+1 种基金the Taishan Scholar Project of Shandong Province,China(No.ts 201511038)the Key Research Project of Shandong Province,China(No.2016ZDJS02A15)
文摘In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,such as magnesium alloy,could be deformed by RISF without additional heating. The objective of this study is to investigate the effects of forming parameters,namely,tool rotational speed,feed-rate,step size and wall angle,on the local temperature rise. Using response surface methodology and central composite design( CCD) experimental design,the significance,sequence of parameters and regression models would be analyzed with AZ31 B as the experimental material,and 3D response surface plots would be shown. Combined with actual processing conditions,the measures to improve the local temperature rise by modifying each parameter would be discussed in the end. The results showed that hierarchy of the parameters with respect to the significance of their effects on the local temperature at the side wall was: feed-rate,step size,and rotational speed,while at the bottom it was: feed-rate,step size,wall angle, and rotational speed, and no significant interaction appeared. It was found that the most significant parameter was not rotational speed,but feed-rate,followed by step size,for both test positions. In addition, the local temperature would increase by elevating step size,wall angle,rotating rate,and bringing down of feed-rate.
文摘The tribological behaviors of two types of seal coatings, nickel-graphite and aluminum-hexagon-boron nitride (Ni-Cg and Al-hBN, respectively) versus a Ti-6Al-4V blade used in turbofan engines were investigated using a high-speed rubbing test. The wear status and damage mechanism of the friction couples were studied and the abradability of the seal coatings was evaluated. By analysis of the coating properties and damage mechanism of the seal couple, the friction heat effect was identified as the key factor influencing blade wear forms as well as coating abradability. A one-dimensional heat conduction model was established to estimate the effect of increasing temperature on the friction interface. The results indicated that in the Ni-Cg and Ti-6Al-4V seal couple, the temperature rising rate (TRR) of the Ti-6Al-4V blade was faster than that of the Ni-Cg coating, and so the Ti-6Al-4V blade softened earlier than the Ni-Cg coating, causing the blade to suffer severe wear. In the Al-hBN and Ti-6Al-4V seal couple, the TRR of the Ti-6Al-4V blade was slower than that of the Al-hBN coating, and so the Al-hBN coating softened first; thus, blade damage was reduced or even replaced by coating adhesion. The square root ratio of thermal diffusivity between the blade and the coating could be taken as an indicator of the ratio of TRR between the blade and coating to predict blade wear status as well as damage mechanism. The results of the model agreed well with the experiment results of the two seal couples used in this study.