The effects on the local skin friction of smooth flat plate by formation of air cavity are investigated experimentally,under the conditions of several variations of air injection angle,pore size,porous surface area an...The effects on the local skin friction of smooth flat plate by formation of air cavity are investigated experimentally,under the conditions of several variations of air injection angle,pore size,porous surface area and transverse step.The experimental results show that local skin friction of downstream of the porous section could be reduced at extent ranging from 50% to 90%,by injection air through pore or slot,with free stream velocities from 2 to 6 m/s.The pore size and area of air injection surface have small effect on skin friction reduction,step has significant effect on skin friction reduction.The mechanism of the skin friction reduction is due to the formation of air cavity,mixed with air and water,between the flat plate and its water boundary layer.展开更多
The rigid-interface friction model is usually used in the nonlinear vibrationof the rectangular plate with dry friction support edges. The present study provides an extensionby using a hysteretic spring friction model...The rigid-interface friction model is usually used in the nonlinear vibrationof the rectangular plate with dry friction support edges. The present study provides an extensionby using a hysteretic spring friction model and taking account of the stick-slip motion of theplate. Results for a range of problem parameters have been obtained. The results show that thenonlinear frequency response behavior of the system can be quite different from the rigid-interfacefriction model. The effects of the stiffness at friction interfaces and the stick-slip motion on thenonlinear vibration of the plate are significant and hence cannot be neglected.展开更多
The skin friction and heat transfer occurring in the laminar boundary layerwhich caused by a vertical liquid jet impinging on a continuously moving horizontal plate werestudied. Similarity solutions for shear stress a...The skin friction and heat transfer occurring in the laminar boundary layerwhich caused by a vertical liquid jet impinging on a continuously moving horizontal plate werestudied. Similarity solutions for shear stress and heat distribution were obtained by using thehooting technique. The results show that the skin friction decreases with an increase of velocityparameter, the evolving of thermal boundary decrease with increasing in Prandtl number, but increasewith increasing of velocity parameter.展开更多
TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning elect...TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD), respectively, and the morphologies, distributions of chemical elements and profiles of worn tracks were also researched using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and optical microscope(OM), respectively. The friction-wear performances of TiAlSiN coating under oil lubricated and dry fiction conditions were investigated, and the wear mechanisms of TiAlSiN coating were discussed. The experimental results show that the coating is primarily composed of(Ti, Al)N, AlTiN, and TiN hard phases, Si_3N_4 exists between the(Ti, Al)N crystal grains, increasing the coating microhardness to 3200 HV. The TiAlSiN coating has excellent performances of reducing friction and wear resistance, the average coefficient of friction(COF) of TiAlSiN coating under oil lubricated condition is only 0.05, lowered than the average COF of 0.211 under dry friction condition, the wear rate decreases by about 81.2% compared with that under dry friction condition. The wear mechanism of TiAlSiN coating under oil lubricated and dry friction conditions is composed of abrasive wear, fatigue wear, and abrasive wear, respectively. The internal friction of oil lubrication is a main factor of decreasing fatigue wear.展开更多
文摘The effects on the local skin friction of smooth flat plate by formation of air cavity are investigated experimentally,under the conditions of several variations of air injection angle,pore size,porous surface area and transverse step.The experimental results show that local skin friction of downstream of the porous section could be reduced at extent ranging from 50% to 90%,by injection air through pore or slot,with free stream velocities from 2 to 6 m/s.The pore size and area of air injection surface have small effect on skin friction reduction,step has significant effect on skin friction reduction.The mechanism of the skin friction reduction is due to the formation of air cavity,mixed with air and water,between the flat plate and its water boundary layer.
文摘The rigid-interface friction model is usually used in the nonlinear vibrationof the rectangular plate with dry friction support edges. The present study provides an extensionby using a hysteretic spring friction model and taking account of the stick-slip motion of theplate. Results for a range of problem parameters have been obtained. The results show that thenonlinear frequency response behavior of the system can be quite different from the rigid-interfacefriction model. The effects of the stiffness at friction interfaces and the stick-slip motion on thenonlinear vibration of the plate are significant and hence cannot be neglected.
基金[This work was financially supported by "973" key foundation of China (No.G 1998061510).]
文摘The skin friction and heat transfer occurring in the laminar boundary layerwhich caused by a vertical liquid jet impinging on a continuously moving horizontal plate werestudied. Similarity solutions for shear stress and heat distribution were obtained by using thehooting technique. The results show that the skin friction decreases with an increase of velocityparameter, the evolving of thermal boundary decrease with increasing in Prandtl number, but increasewith increasing of velocity parameter.
基金Funded by the Jiangsu Province Science and Technology Support Program(Industry)(BE2014865)
文摘TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD), respectively, and the morphologies, distributions of chemical elements and profiles of worn tracks were also researched using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and optical microscope(OM), respectively. The friction-wear performances of TiAlSiN coating under oil lubricated and dry fiction conditions were investigated, and the wear mechanisms of TiAlSiN coating were discussed. The experimental results show that the coating is primarily composed of(Ti, Al)N, AlTiN, and TiN hard phases, Si_3N_4 exists between the(Ti, Al)N crystal grains, increasing the coating microhardness to 3200 HV. The TiAlSiN coating has excellent performances of reducing friction and wear resistance, the average coefficient of friction(COF) of TiAlSiN coating under oil lubricated condition is only 0.05, lowered than the average COF of 0.211 under dry friction condition, the wear rate decreases by about 81.2% compared with that under dry friction condition. The wear mechanism of TiAlSiN coating under oil lubricated and dry friction conditions is composed of abrasive wear, fatigue wear, and abrasive wear, respectively. The internal friction of oil lubrication is a main factor of decreasing fatigue wear.