The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fibe...The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fiber wrapping around a cylinder made of pure Cu was immersed in liquid nitrogen. The force and displacement resolutions of the experimental system were as high as 0.01 mN and 0.03 ~m, respectively. The NbTi fibers with diameters ranging from 22.9 to 115 ~m were used in the experiments, and their frictional behaviors in three media, i.e., liquid nitrogen, air and water, were systemically investigated. It was found that the frictional force in air showed a remarkable size effect. The existence of water medium could significantly reduce the frictional force, but could not eliminate the size effect. For the samples with the same diameter, the frictional force in liquid nitrogen was about 1.4 times of that in air, accompanied with remark- able stick-slip phenomenon. Notably, the fiber's frictional behavior in liquid nitrogen showed no dependence on diameter. In order to interpret these phenomena, the frictional behaviors of the fibers in air, water and liquid nitrogen were simulated using a modified spring-slider model, by taking into account the influence of hydrophilicity on surface roughness, and the influence of surface roughness on the fiber's frictional behavior. The simulation results were consistent with the experimental data qualitatively.展开更多
Lignocellulosic biomass material sourced from plants and herbaceous sources is considered as a prospective feedstock of inexpensive,potentially carbon-neutral energy.Lignocellulosic biomass is structurally built on ce...Lignocellulosic biomass material sourced from plants and herbaceous sources is considered as a prospective feedstock of inexpensive,potentially carbon-neutral energy.Lignocellulosic biomass is structurally built on cellulose,hemicellulose,and lignin,which are present in varying concentrations based on the feedstock type and play distinct and not well understood mechanical functions in the flow behavior.The frictional characteristics of lignocellulosic biomass particulates influence their flow behavior in biorefineries.Thus,it is important to fundamentally investigate the relative contribution of cellulose,hemicellulose,and lignin to the frictional behavior.However,these three biopolymers are interwoven into a complex matrix in the lignocellulosic biomass,thus making it hard to quantify the contribution of each biopolymer.In this study,we selectively remove hemicellulose from switchgrass and investigate the effects of its diminishing concentration on the coefficient of friction.We observed that the angle of repose and,therefore,the coefficient of friction for a loose assembly of the control and treated switchgrass samples decrease with decreasing hemicellulose content.This indicates the frictional resistance to flow for biomass particulate assemblies is at least proportional to the hemicellulose content.We also established that the observed changes in the frictional behavior were not due to particle morphological characteristics.展开更多
Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool...Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.展开更多
Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between mar...Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.展开更多
Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and...Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.展开更多
The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The ef...The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.展开更多
The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribologi...The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.展开更多
How to improve the efficiency of the linear ultrasonic motor with hard contact materials(HLUSM)or the precision motion stage driven by HLUSM,becomes a hot issue.Analysis and testing of friction behavior on the contact...How to improve the efficiency of the linear ultrasonic motor with hard contact materials(HLUSM)or the precision motion stage driven by HLUSM,becomes a hot issue.Analysis and testing of friction behavior on the contact interface of HLUSM is one of the key issues.Under the action of ultrasonic vibration and impact,the friction behavior on contact interface is very complex due to micro-amplitude and high frequency.Moreover,it is difficult to observe and test it.Focusing on the frictional behavior on the interface of HLUSM,a new method,through testing the vibration of the driving tips(scanning vibrometer PSV-400-3D)and the motion of the slider(displacement sensor LK-G30),respectively,is proposed.Then,take the HLUSM as an example,theoretical analyses and experiments are carried out.Theoretical analysis shows that the average speed of the slider should be 600 mm/s when there is no slippage between the stator and slider during the contact process.Experimental results show that the average speed of the slider is about 390mm/s.At the same time,the tangential vibration speed of the driving tip of HLUSM is larger than 600 mm/s.Therefore,there must be slippage between the stator and slider of HLUSM.Further experimental results show that the maximum efficiency is less than 10%.The slippage on the contact interface should be the main reason for the low efficiency of HLUSM.展开更多
Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and th...Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and the worn surface after sliding test were characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM). The friction and wear behavior of the modified layer against alumina ball was investigated in the absence of lubricant under different loads(1 N and 2 N). The X-ray diffraction analysis reveals that nitride layer is mainly composed of TiN and Ti2N, while coating film consists of Ti N phase. Friction and wear test indicates that both modified layers can improve the wear resistance compared to untreated Ti-13Nb-13 Zr. Ti N thin film produces very hard surface, but may be easy to cause coating fracture and delamination under high normal load. However, nitride layer exhibits better wear performance. This is attributed to hard compound layer maintained its integrity with the hardened nitrogen diffusion zone during friction and wear process.展开更多
Laser 3D printing,also known as laser additive manufacturing(LAM),is favored for its ability to form bulk metallic glass(BMG)and its composite materials(BMGcs)with freeform geometries.In this work,two different kinds ...Laser 3D printing,also known as laser additive manufacturing(LAM),is favored for its ability to form bulk metallic glass(BMG)and its composite materials(BMGcs)with freeform geometries.In this work,two different kinds of Fe_(41)Co_(7)Cr_(15)Mo_(14)C_(15)B_(6)Y_(2)amorphous coatings(A and B)were prepared by using LAM technology under air-and water-cooled conditions,respectively;meanwhile,to reduce the cracks generated due to the residual thermal stresses,coating C obtained by air-sweep annealing of B with a low energy-density laser.The morphology and amorphous content and microstructure of the coatings were investigated,the results show many cracks in coating B deposited under water-cooled conditions,and its microstructure shows an amorphous-crystal-nanocrystalline mixed structure.Cracking was suppressed in coating C,obtained by air-sweep annealing based on coating B,but the amorphous content was reduced from 32.6 to 13.4%.And the hardness and corrosion resistance of the coating will increase with the increase in the amorphous content.Finally,the internal friction behavior of a BMGcs was prepared on the basis of the process of sample C is compared with that of as-cast amorphous alloys.The results show that the low temperature internal friction behavior of BMGcs is affected by the defects produced during printing,and the high temperature internal friction behavior is affected by the precipitated hard phase.展开更多
Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough a...Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti-frictional components.展开更多
Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for tr...Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for train system designers to choose proper dimensions for and optimize train's subsystems. This paper presents a modular tool for the prediction of train braking performance, with a par- ticular attention to the accurate prediction of stopping distances. The tool takes into account different loading and operating conditions, in order to verify the safety require- ments prescribed by European technical specifications for interoperability of high-speed trains and the corresponding EN regulations. The numerical results given by the tool were verified and validated by comparison with experimental data, considering as benchmark case an Ansaldo EMU V250 train--a European high-speed train--currently developed for Belgium and Netherlands high-speed lines, on which technical information and experimental data directly recorded during the preliminary tests were available. An accurate identification of the influence of the braking pad friction factor on braking performances allowed obtaining reliable results.展开更多
The objective of this research is to prepare specially designed surface texture on hard steel surface by electrochemical micromachining (EM) and to incorporate electroless plated Ag/MoS2 solid lubricant coating into t...The objective of this research is to prepare specially designed surface texture on hard steel surface by electrochemical micromachining (EM) and to incorporate electroless plated Ag/MoS2 solid lubricant coating into the dimples of EM textured steel surface to effectively reduce friction and wear of steel-steel contacts. The friction and wear behavior of the Ag/MoS2 solid lubricant coating on EM textured steel surface was evaluated in relation to the size and spacing of the dimples thereon. The microstructure of as-plated Ag/MoS2 solid lubricant coating and the morphology and elemental composition of the worn coating surface and counterface steel surface were analyzed by means of optical microscopy, scanning electron microscopy, and energy dispersive spectrometry. It is found that electroless plated Ag/MoS2 coating is able to greatly reduce the friction and wear of the EM textured steel disc coupled with GCr15 steel ring, mainly because of the formation of solid self-lubricating layer on the EM textured steel surface and of transferred lubricating film on counterface steel surface. The diameter and spacing of the dimples are suggested as 500 μm for acquiring the best wear resistance of the hard steel discs after electrochemical micromachining treatment and electroless plating of Ag/MoS2 solid lubricating coating.展开更多
The effect of friction behavior on the compacted density is significant, but the relationship between the topological properties of the contact network and friction behavior during powder compaction remains unclear. B...The effect of friction behavior on the compacted density is significant, but the relationship between the topological properties of the contact network and friction behavior during powder compaction remains unclear. Based on the discrete element method (DEM), a DEM model for die compaction was established, and the Hertz contact model was modified into an elastoplastic contact model that was more suitable for metal-powder compaction. The evolution of the topological properties of the contact network and its mechanism during powder compaction was explored using the elastoplastic contact model. The results demonstrate that the friction behavior between the particles is closely related to the topological properties of the contact network. Side wall friction results in smaller clustering coefficient (CC) and excess contact (EC) in the lower region near the side wall. Corresponding to this phenomenon, the upper region near the side wall has more high-stress particles when the major principal stress threshold was considered, and the CC and EC are significantly higher than those in the other regions. This study provides a theoretical basis for improving powder compaction behavior.展开更多
Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribomet...Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribometer under unlubricated conditions. The wear mechanisms and the wear transition were analyzed based on examinations of worn surfaces using SEM, EDS and XRD. When the velocity increases, the friction coefficient and the wear rate of the Ti-6Al-4V alloy show typical transition features, namely, the critical values of sliding velocities for 0.33 and 0.67 MPa are 60 and 40 m/s, respectively. The experimental results reveal that the tribological behaviours of Ti-6Al-4V alloys are controlled by the thermal-mechanical effects, which connects with the friction heat and hard particles of the pairs. A tribolayer containing mainly Ti oxides and V oxides is formed on the worn surface of Ti-6Al-4V alloy.展开更多
Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on pr...Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on properties of the thin film were investigated. The chemical compositions of the as-deposited films were characterized by Raman spectroscopy. The micro-hardness, friction and wear behavior, corrosion resistance of the samples were evaluated, respectively. Compared with uncoated substrates, micro-hardness results reveal that the maximum is increased by 88.7%. In addition, the friction coefficient decreases to about 0.1, and the corrosion resistance of treated coupons surface are improved significantly.展开更多
Natural materials tend to exhibit excellent performance in the engineering field because of their structure and special functions.A natural red willow,called natural porous wood material(NPWM),was found,and wear tests...Natural materials tend to exhibit excellent performance in the engineering field because of their structure and special functions.A natural red willow,called natural porous wood material(NPWM),was found,and wear tests were conducted to determine its potential as an oil-impregnated material by utilizing its special porous structure.Fluorination treatment was adopted to improve the NPWM properties for absorbing and storing lubricating oil.The different contributions of soaking and fluorination-soaking treatments on the tribological properties of NPWMs and their respective mechanism of effect were revealed.The results showed that the fluorination-soaking treatment helped absorb and store sufficient lubricating oil in the NPWM porous structure;therefore,more lubricating oil would be squeezed out and function as a tribol-film between contacting surfaces during the friction process,thus ultimately contributing to stable and smooth wear responses even under prolong friction.However,the formation of an oil-in-water emulsion,caused by the buoyancy effect,destroyed the oil films on the worn NPWM surface in a water environment,resulting in higher coefficients of friction(COFs)under water conditions than under dry friction,even after the fluorination-soaking treatment.The knowledge gained herein could not only verify the potential of NPWM as an excellent oil-impregnated material in the engineering field but also provide a new methodology for the design of artificial porous materials with stable and smooth friction processes.展开更多
In the glass molding process,the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature.To improve the chemical inertne...In the glass molding process,the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature.To improve the chemical inertness and anti-friction properties of the mold,an amorphous carbon coating was synthesized on the tungsten carbide-cobalt(WC–8Co)substrate by magnetron sputtering.The friction behavior between the glass and carbon coating has a significant influence on the functional protection and service life of the mold.Therefore,the glass ring compression tests were conducted to measure the friction coefficient and friction force of the contact interface between the glass and amorphous carbon coating at the high temperature.Meanwhile,the detailed characterization of the amorphous carbon coating was performed to study the microstructure evolution and surface topography of the amorphous carbon coating during glass molding process by scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Ramon spectroscopy,and atomic force microscope(AFM).The results showed that the amorphous carbon coating exhibited excellent thermal stability,but weak shear friction strength.The friction coefficient between the glass and coating depended on the temperature.Besides,the service life of the coating was governed by the friction force of the contact interface,processing conditions,and composition diffusion.This work provides a better understanding of the application of carbon coatings in the glass molding.展开更多
Molybdenum dialkyldithiocarbamate(MoDTC)is widely used as a friction modifier in engine lubricating oil.Under MoDTC lubrication,the friction and wear behaviors of tungsten-doped diamond-like carbon(W-DLC)films anneale...Molybdenum dialkyldithiocarbamate(MoDTC)is widely used as a friction modifier in engine lubricating oil.Under MoDTC lubrication,the friction and wear behaviors of tungsten-doped diamond-like carbon(W-DLC)films annealed at 100-400℃were discussed and evaluated using scanning electron microscopy(SEM),atomic force microscopy(AFM),and Raman spectroscopy.Under(polymerized alpha olefin)PAO+MoDTC lubrication,the coefficient of friction of all samples decreased,but the wear rates of the W-DLC films annealed at 300℃increased significantly.By interacting with zinc dialkyldithiophosphate(ZDDP),the wear rates of W-DLC films annealed at different temperatures declined significantly owing to the formation of dense phosphate tribofilms on the worn surfaces.展开更多
This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-...This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 55OC for 30rain can effectively inhibit the cryogenic intergranular brittleness of the post- weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal.展开更多
基金This work is supported by the National Natural Science Foundation of China (No. 11622217)
文摘The purpose of the current study is to explore the frictional behavior of a micro- sized superconducting fiber at the low-temperature condition. At first, a highly precise tribometer composed of a superconducting fiber wrapping around a cylinder made of pure Cu was immersed in liquid nitrogen. The force and displacement resolutions of the experimental system were as high as 0.01 mN and 0.03 ~m, respectively. The NbTi fibers with diameters ranging from 22.9 to 115 ~m were used in the experiments, and their frictional behaviors in three media, i.e., liquid nitrogen, air and water, were systemically investigated. It was found that the frictional force in air showed a remarkable size effect. The existence of water medium could significantly reduce the frictional force, but could not eliminate the size effect. For the samples with the same diameter, the frictional force in liquid nitrogen was about 1.4 times of that in air, accompanied with remark- able stick-slip phenomenon. Notably, the fiber's frictional behavior in liquid nitrogen showed no dependence on diameter. In order to interpret these phenomena, the frictional behaviors of the fibers in air, water and liquid nitrogen were simulated using a modified spring-slider model, by taking into account the influence of hydrophilicity on surface roughness, and the influence of surface roughness on the fiber's frictional behavior. The simulation results were consistent with the experimental data qualitatively.
基金The authors would like to acknowledge funding support for this research by UTIA AgResearch through AgResearch Tuition Program.
文摘Lignocellulosic biomass material sourced from plants and herbaceous sources is considered as a prospective feedstock of inexpensive,potentially carbon-neutral energy.Lignocellulosic biomass is structurally built on cellulose,hemicellulose,and lignin,which are present in varying concentrations based on the feedstock type and play distinct and not well understood mechanical functions in the flow behavior.The frictional characteristics of lignocellulosic biomass particulates influence their flow behavior in biorefineries.Thus,it is important to fundamentally investigate the relative contribution of cellulose,hemicellulose,and lignin to the frictional behavior.However,these three biopolymers are interwoven into a complex matrix in the lignocellulosic biomass,thus making it hard to quantify the contribution of each biopolymer.In this study,we selectively remove hemicellulose from switchgrass and investigate the effects of its diminishing concentration on the coefficient of friction.We observed that the angle of repose and,therefore,the coefficient of friction for a loose assembly of the control and treated switchgrass samples decrease with decreasing hemicellulose content.This indicates the frictional resistance to flow for biomass particulate assemblies is at least proportional to the hemicellulose content.We also established that the observed changes in the frictional behavior were not due to particle morphological characteristics.
基金financial support from the National Key Research and Development Program of China (2019YFB2005401)National Natural Science Foundation of China (Nos. 91860207 and 52175420)+5 种基金Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project)(No. 2020CXGC010204)Shandong Provincial Natural Science Foundation of China (2021JMRH0301 and2021JMRH0304)Taishan Scholar FoundationInternational Partnership Scheme of the Bureau of the International Scientific Cooperation of the Chinese Academy of Sciences(No. 181722KYSB20180015)Research and Innovation Office of The Hong Kong Polytechnic University (BBX5and BBX7)funding support to the State Key Laboratories in Hong Kong
文摘Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.
基金supported by a grant from the National Natural Science Foundations of China(No.52171282)supported by Taishan Scholars Program of Shandong Province,China(No.tsqn202306098)the Shandong Provincial Key Research and Development Plan,China(No.2021ZLGX04).
文摘Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.
基金financial support from the National Key Fundamental Research and Development Project of China (2014CB644002)。
文摘Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials.
基金NationalNatureScienceFoundationofChina (No .5 0 0 0 5 0 2 4)
文摘The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.
基金supported by National Natural Science Foundation of China (Grant No. 50575135)Program for New Century Excellent Talents of Ministry of Education of China (Grant No. NCET-06-0399)Tribology Science Fund of the State Key Laboratory of Tribology, China
文摘The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films; SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing ofoil lubricating, in a variety of mechanical processing fields to implement the green production process.
基金supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Natural Science Foundation of China (Nos.51408311,51375225)
文摘How to improve the efficiency of the linear ultrasonic motor with hard contact materials(HLUSM)or the precision motion stage driven by HLUSM,becomes a hot issue.Analysis and testing of friction behavior on the contact interface of HLUSM is one of the key issues.Under the action of ultrasonic vibration and impact,the friction behavior on contact interface is very complex due to micro-amplitude and high frequency.Moreover,it is difficult to observe and test it.Focusing on the frictional behavior on the interface of HLUSM,a new method,through testing the vibration of the driving tips(scanning vibrometer PSV-400-3D)and the motion of the slider(displacement sensor LK-G30),respectively,is proposed.Then,take the HLUSM as an example,theoretical analyses and experiments are carried out.Theoretical analysis shows that the average speed of the slider should be 600 mm/s when there is no slippage between the stator and slider during the contact process.Experimental results show that the average speed of the slider is about 390mm/s.At the same time,the tangential vibration speed of the driving tip of HLUSM is larger than 600 mm/s.Therefore,there must be slippage between the stator and slider of HLUSM.Further experimental results show that the maximum efficiency is less than 10%.The slippage on the contact interface should be the main reason for the low efficiency of HLUSM.
基金Funded by the National Natural Science Foundation of China(Nos.51671140 and 51474154)the Shanxi Province Programs for Graduate Education Reform(2015JG42)
文摘Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and the worn surface after sliding test were characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM). The friction and wear behavior of the modified layer against alumina ball was investigated in the absence of lubricant under different loads(1 N and 2 N). The X-ray diffraction analysis reveals that nitride layer is mainly composed of TiN and Ti2N, while coating film consists of Ti N phase. Friction and wear test indicates that both modified layers can improve the wear resistance compared to untreated Ti-13Nb-13 Zr. Ti N thin film produces very hard surface, but may be easy to cause coating fracture and delamination under high normal load. However, nitride layer exhibits better wear performance. This is attributed to hard compound layer maintained its integrity with the hardened nitrogen diffusion zone during friction and wear process.
基金This work was supported by the National Natural Science Foundation of China(No.52161028)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(No.20213BCJ22017).
文摘Laser 3D printing,also known as laser additive manufacturing(LAM),is favored for its ability to form bulk metallic glass(BMG)and its composite materials(BMGcs)with freeform geometries.In this work,two different kinds of Fe_(41)Co_(7)Cr_(15)Mo_(14)C_(15)B_(6)Y_(2)amorphous coatings(A and B)were prepared by using LAM technology under air-and water-cooled conditions,respectively;meanwhile,to reduce the cracks generated due to the residual thermal stresses,coating C obtained by air-sweep annealing of B with a low energy-density laser.The morphology and amorphous content and microstructure of the coatings were investigated,the results show many cracks in coating B deposited under water-cooled conditions,and its microstructure shows an amorphous-crystal-nanocrystalline mixed structure.Cracking was suppressed in coating C,obtained by air-sweep annealing based on coating B,but the amorphous content was reduced from 32.6 to 13.4%.And the hardness and corrosion resistance of the coating will increase with the increase in the amorphous content.Finally,the internal friction behavior of a BMGcs was prepared on the basis of the process of sample C is compared with that of as-cast amorphous alloys.The results show that the low temperature internal friction behavior of BMGcs is affected by the defects produced during printing,and the high temperature internal friction behavior is affected by the precipitated hard phase.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275302,51005154)Chenguang Program of Shanghai Municipal Education Commission of China(Grant No.12CG11)
文摘Chemical vapor deposition (CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond (BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD (HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond (BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond (UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond (FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti-frictional components.
文摘Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for train system designers to choose proper dimensions for and optimize train's subsystems. This paper presents a modular tool for the prediction of train braking performance, with a par- ticular attention to the accurate prediction of stopping distances. The tool takes into account different loading and operating conditions, in order to verify the safety require- ments prescribed by European technical specifications for interoperability of high-speed trains and the corresponding EN regulations. The numerical results given by the tool were verified and validated by comparison with experimental data, considering as benchmark case an Ansaldo EMU V250 train--a European high-speed train--currently developed for Belgium and Netherlands high-speed lines, on which technical information and experimental data directly recorded during the preliminary tests were available. An accurate identification of the influence of the braking pad friction factor on braking performances allowed obtaining reliable results.
基金supported by the the National NaturalScience Foundation of China(No.51205001)Foundation for Young Talents in College of Anhui Province(No.2012SQRL083ZD)the Talent Innovation Fund of An-hui Polytechnic University(No.S05305)
文摘The objective of this research is to prepare specially designed surface texture on hard steel surface by electrochemical micromachining (EM) and to incorporate electroless plated Ag/MoS2 solid lubricant coating into the dimples of EM textured steel surface to effectively reduce friction and wear of steel-steel contacts. The friction and wear behavior of the Ag/MoS2 solid lubricant coating on EM textured steel surface was evaluated in relation to the size and spacing of the dimples thereon. The microstructure of as-plated Ag/MoS2 solid lubricant coating and the morphology and elemental composition of the worn coating surface and counterface steel surface were analyzed by means of optical microscopy, scanning electron microscopy, and energy dispersive spectrometry. It is found that electroless plated Ag/MoS2 coating is able to greatly reduce the friction and wear of the EM textured steel disc coupled with GCr15 steel ring, mainly because of the formation of solid self-lubricating layer on the EM textured steel surface and of transferred lubricating film on counterface steel surface. The diameter and spacing of the dimples are suggested as 500 μm for acquiring the best wear resistance of the hard steel discs after electrochemical micromachining treatment and electroless plating of Ag/MoS2 solid lubricating coating.
基金grateful to the Natural Science Foundation of Fujian Province(grant No.2020J01869)the Initial Scientific Research Fund in Fujian University of Technology(grant No.GY-Z19123)for providing financial support to this study.
文摘The effect of friction behavior on the compacted density is significant, but the relationship between the topological properties of the contact network and friction behavior during powder compaction remains unclear. Based on the discrete element method (DEM), a DEM model for die compaction was established, and the Hertz contact model was modified into an elastoplastic contact model that was more suitable for metal-powder compaction. The evolution of the topological properties of the contact network and its mechanism during powder compaction was explored using the elastoplastic contact model. The results demonstrate that the friction behavior between the particles is closely related to the topological properties of the contact network. Side wall friction results in smaller clustering coefficient (CC) and excess contact (EC) in the lower region near the side wall. Corresponding to this phenomenon, the upper region near the side wall has more high-stress particles when the major principal stress threshold was considered, and the CC and EC are significantly higher than those in the other regions. This study provides a theoretical basis for improving powder compaction behavior.
基金the National Natural Science Foundation of China(No.50375046 and No.50432020)
文摘Tribological behaviours of Ti-6Al-4V alloy pins sliding against GCr15 steel discs over a range of contact pressures (0.33-1.33 MPa) and sliding velocities (30-70 m/s) were investigated using a pin-on-disc tribometer under unlubricated conditions. The wear mechanisms and the wear transition were analyzed based on examinations of worn surfaces using SEM, EDS and XRD. When the velocity increases, the friction coefficient and the wear rate of the Ti-6Al-4V alloy show typical transition features, namely, the critical values of sliding velocities for 0.33 and 0.67 MPa are 60 and 40 m/s, respectively. The experimental results reveal that the tribological behaviours of Ti-6Al-4V alloys are controlled by the thermal-mechanical effects, which connects with the friction heat and hard particles of the pairs. A tribolayer containing mainly Ti oxides and V oxides is formed on the worn surface of Ti-6Al-4V alloy.
文摘Diamond-like carbon (DLC) films were synthesized by plasma immersion ion implantation and deposition (PIIID) on 9Cr18 bearing steel surface. Influences of working gas pressure and pulse width of the bias voltage on properties of the thin film were investigated. The chemical compositions of the as-deposited films were characterized by Raman spectroscopy. The micro-hardness, friction and wear behavior, corrosion resistance of the samples were evaluated, respectively. Compared with uncoated substrates, micro-hardness results reveal that the maximum is increased by 88.7%. In addition, the friction coefficient decreases to about 0.1, and the corrosion resistance of treated coupons surface are improved significantly.
基金This work was supported by the National Natural Science Foundation of China(No.52075399)HighTech Ship Research Project of Ministry of Industry and Information Technology(No.MIIT[2019]358)the financial support from the program of China Scholarships Council(CSC.No.202006950002).
文摘Natural materials tend to exhibit excellent performance in the engineering field because of their structure and special functions.A natural red willow,called natural porous wood material(NPWM),was found,and wear tests were conducted to determine its potential as an oil-impregnated material by utilizing its special porous structure.Fluorination treatment was adopted to improve the NPWM properties for absorbing and storing lubricating oil.The different contributions of soaking and fluorination-soaking treatments on the tribological properties of NPWMs and their respective mechanism of effect were revealed.The results showed that the fluorination-soaking treatment helped absorb and store sufficient lubricating oil in the NPWM porous structure;therefore,more lubricating oil would be squeezed out and function as a tribol-film between contacting surfaces during the friction process,thus ultimately contributing to stable and smooth wear responses even under prolong friction.However,the formation of an oil-in-water emulsion,caused by the buoyancy effect,destroyed the oil films on the worn NPWM surface in a water environment,resulting in higher coefficients of friction(COFs)under water conditions than under dry friction,even after the fluorination-soaking treatment.The knowledge gained herein could not only verify the potential of NPWM as an excellent oil-impregnated material in the engineering field but also provide a new methodology for the design of artificial porous materials with stable and smooth friction processes.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of Guangdong Province(2018A030313466)the assistance on the observation received from the Electron Microscope Center of the Shenzhen University.
文摘In the glass molding process,the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature.To improve the chemical inertness and anti-friction properties of the mold,an amorphous carbon coating was synthesized on the tungsten carbide-cobalt(WC–8Co)substrate by magnetron sputtering.The friction behavior between the glass and carbon coating has a significant influence on the functional protection and service life of the mold.Therefore,the glass ring compression tests were conducted to measure the friction coefficient and friction force of the contact interface between the glass and amorphous carbon coating at the high temperature.Meanwhile,the detailed characterization of the amorphous carbon coating was performed to study the microstructure evolution and surface topography of the amorphous carbon coating during glass molding process by scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),Ramon spectroscopy,and atomic force microscope(AFM).The results showed that the amorphous carbon coating exhibited excellent thermal stability,but weak shear friction strength.The friction coefficient between the glass and coating depended on the temperature.Besides,the service life of the coating was governed by the friction force of the contact interface,processing conditions,and composition diffusion.This work provides a better understanding of the application of carbon coatings in the glass molding.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.51875537 and 41872183)the Pre-Research Program in National 14th Five-Year Plan(No.61409230614)the Fundamental Research Funds for the Central University(No.2652018094).
文摘Molybdenum dialkyldithiocarbamate(MoDTC)is widely used as a friction modifier in engine lubricating oil.Under MoDTC lubrication,the friction and wear behaviors of tungsten-doped diamond-like carbon(W-DLC)films annealed at 100-400℃were discussed and evaluated using scanning electron microscopy(SEM),atomic force microscopy(AFM),and Raman spectroscopy.Under(polymerized alpha olefin)PAO+MoDTC lubrication,the coefficient of friction of all samples decreased,but the wear rates of the W-DLC films annealed at 300℃increased significantly.By interacting with zinc dialkyldithiophosphate(ZDDP),the wear rates of W-DLC films annealed at different temperatures declined significantly owing to the formation of dense phosphate tribofilms on the worn surfaces.
基金Financial support by State Key Lab of Advanced Welding and Joining,Harbin Institute of Technology
文摘This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 55OC for 30rain can effectively inhibit the cryogenic intergranular brittleness of the post- weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal.