In open-ended piles, inner friction is developed between inner pile shaf and the inner soil. Inner frictional resistance depends largely on the degree of soil plugging, which is influenced by many factors including pi...In open-ended piles, inner friction is developed between inner pile shaf and the inner soil. Inner frictional resistance depends largely on the degree of soil plugging, which is influenced by many factors including pile diameter, relative density and end conditions of piles. In this paper, effects of inner sleeves on inner frictional resistance are discussed. The experiments were conducted on a medium-dense sandy ground using laboratory-scale piles. It was observed that the piles penetrated under partially-plugged or unplugged state. The results suggest that inner fiictional resistance, Qin increases with sleeve height, l linearly and requires 2D (D is pile outer diameter) of l to produce a large as 50% of Qt by Qin (Qt is total resistance). The results also indicate that bearing capacity increases with wall thickness at the pile tip, which can be attributed to the increase in annular area. The results also indicate that soil plug height is independent of sleeve height. The results also reveal that the penetration of straight piles is closer to unplugged state than the sleeved piles. The results of incremental filling ratio and plug length ratio also indicate that the degree of soil plugging is affected by the sleeve height.展开更多
It is recognized that for turbulent flow inside a duct of angular cross section,devi- ation will take place if the hydraulic diameter is taken as the equivalent diameter to calculate the mean friction coefficient of t...It is recognized that for turbulent flow inside a duct of angular cross section,devi- ation will take place if the hydraulic diameter is taken as the equivalent diameter to calculate the mean friction coefficient of the duct wall.It still remains a question to determine the extent of the deviation as no common formula is available and only a few cross sections have been tested. This paper presents an approach which takes the angle area of the angular cross section as an ad- dition to the angle-less cross section,analyses and calculates the size of laminar flow area of the angle area,quantifies the amount of deviation of using hydraulic diameter as the equivalent di- ameter and finally obtains the formula for calculating the turbulent friction coefficients of the ducts of arbitrary angular cross sections.The formula derived is universally applicable to cross sections with arbitrary number of angles and arbitrary forms of angles,i.e.,arbitrary angular cross sections.Experience shows it is easy to use and the result obtained has a good agreement with physical mechanism and test measurements.展开更多
This paper deal with the frictional resistance characteristics of gas liquid two phase flow in vertical upward helical coiled tubes under the system pressure 0.1 0.6MPa. By means of dimension analysis and π theo...This paper deal with the frictional resistance characteristics of gas liquid two phase flow in vertical upward helical coiled tubes under the system pressure 0.1 0.6MPa. By means of dimension analysis and π theorem, the correlation formulas were obtained for calculating the frictional resistance coefficients of gas liquid two phase flow in helical coiled tubes. The calculated results agree well with the experimental results.展开更多
Recently,computational fluid dynamics(CFD)approaches have been effectively used by researchers to calculate the resistance characteristics of ships that have rough outer surfaces.These approaches are mainly based on m...Recently,computational fluid dynamics(CFD)approaches have been effectively used by researchers to calculate the resistance characteristics of ships that have rough outer surfaces.These approaches are mainly based on modifying wall functions using experimentally pre-determined roughness functions.Although several recent studies have shown that CFD can be an effective tool to calculate resistance components of ships for different roughness conditions,most of these studies were performed using the same ship geometry(KRISO Container Ship).Thus,the effect of ship geometry on the resistance characteristics of rough hull surfaces is worth investigating.In this study,viscous resistance components of four different ships are calculated for different roughness conditions.First,flat plate simulations are performed using a previous experimental study for comparison purposes.Then,the viscous resistance components of three-dimensional hulls are calculated.All simulations are performed using two different turbulence models to investigate the effect of the turbulence model on the results.An examination of the distributions of the local skin friction coefficients of the DTMB 5415 and Series 60 showed that the plumpness of the bow form has a significant effect on the increase in frictional resistance with increasing roughness.Another significant finding of the study is that viscous pressure resistance is directly affected by the surface roughness.For all geometries,viscous pressure resistances showed a significant increase for highly rough surfaces.展开更多
This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The pro...This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.展开更多
This study presents a simple numerical method that can be used to evaluate the hydrodynamic performances of antifouling paints.Steady Reynolds-averaged Navier-Stokes equations were solved through a finite volume techn...This study presents a simple numerical method that can be used to evaluate the hydrodynamic performances of antifouling paints.Steady Reynolds-averaged Navier-Stokes equations were solved through a finite volume technique,whereas roughness was modeled with experimentally determined roughness functions.First,the methodology was validated with previous experimental studies with a flat plate.Second,flow around the Kriso Container Ship was examined.Lastly,full-scale results were predicted using Granville’s similarity law.Results indicated that roughness has a similar effect on the viscous pressure resistance and frictional resistance around a Reynolds number of 10^7.Moreover,the increase in frictional resistance due to roughness was calculated to be approximately 3%-5%at the ship scale depending on the paint.展开更多
To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled a...To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled as a Newtonian fluid. The interaction between solid and liquid phases, which plays a major role in debris flow movement, is assumed to consist of drag and buoyancy forces. The applicability of drag force formulas is discussed. Considering the complex interaction between debris flow and the bed surface, a combined friction boundary condition is imposed on the bottom, and this is also discussed. To solve the complex model equations, a numerical method with second-order accuracy based on the finite volume method is proposed. Several numerical experiments are performed to verify the feasibilities of model and numerical schemes. Numerical results demonstrate that different solid volume fractions substantially affect debris flow movement.展开更多
The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in...The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in conventional cyclic triaxial tests and cyclic torsional shear triaxial tests.It has been found that the dy- namic effective shear strength is composed of effective frictional resistance and viscous resistance,which are characterized by the strain rate dependent feature of strength magnitude,the coupling of consolidation stress with cyclic stress and the dependency of time needed to make the soil strength sufficiently mobilized,and can also be ex- pressed by the extended Mohr-Coulomb's law.The two strength parameters of the dynamic effective internal frictional angle φd and the dynamic viscosity coefficient η are determined.The former is unvaried for different number of cyclic loading,dy- namic stress form and consolidation stress ratio.And the later is unvaried for the different dynamic shear strain rate γt developed during the sand liquefaction,but increases with the increase of initial density of sand.The generalization of dynamic effective stress strength criterion in the 3-dimensional effective stress space is studied in detail for the purpose of its practical use.展开更多
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses si...In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.展开更多
Based on laboratory tests and field materials evaluation, the inner frictional resistance of SMA skeleton was investigated and then the degradation behaviour of SMA skeleton was characterized for recycling purpose. In...Based on laboratory tests and field materials evaluation, the inner frictional resistance of SMA skeleton was investigated and then the degradation behaviour of SMA skeleton was characterized for recycling purpose. Inner frictional resistance test was designed to investigate the skeleton characteristics of SMA aggregate mixture. The experimental results indicate that SMA skeleton has much stronger inner frictional resistance than AC skeleton, and coarse aggregates provide main contributions to the inner frictional resistance of SMA skeleton. Crushing test and superpave gyratory compactor (SGC) test were designed to reveal the degradation behaviour of SMA skeleton. To verify the laboratory characterization, field materials were also evaluated. The results indicate that the degradation of SMA skeleton is not random but has fixed internal trend, especially the 4.75mm aggregate plays a key role in the graded aggregates. Based on the testing results, it can be concluded that long-term repeated loading can cause degradation of SMA skeleton. However, the gradation does not keep deteriorating under repeated loading. When the inner frictional resistance is small enough, outside pressure will cause flow deformation of skeleton instead of degradation. Thus, well-designed SMA aggregate mixture is valuable for recycling after long-term in service. And it is important to restore the skeleton, especially the coarse aggregate part.展开更多
The microscopic physical properties of Hardened Cement Paste (HCP) surfaces were evaluated by using Scanning Probe Microscopy (SPM). The cement pastes were cured under a hydrostatic pressure of 400 MPa and the contact...The microscopic physical properties of Hardened Cement Paste (HCP) surfaces were evaluated by using Scanning Probe Microscopy (SPM). The cement pastes were cured under a hydrostatic pressure of 400 MPa and the contacting surfaces with a slide glass during the curing were studied. Scanning Electron Microscope (SEM) observation at a magnification of 7000 revealed smooth surfaces with no holes. The surface roughness calculated from the SPM measurement was 4 nm. The surface potential and the frictional force measured by SPM were uniform throughout the measured area 24 h after the curing. However, spots of low surface potential and stains of low frictional force and low viscoelasticity were observed one month after curing. This change was attributed to the carbonation of hydrates.展开更多
Buckling of submarine pipelines under thermal stress is one of the most important problems to be considered in pipeline design. And pipeline with initial imperfections will easily undergo failure due to global bucklin...Buckling of submarine pipelines under thermal stress is one of the most important problems to be considered in pipeline design. And pipeline with initial imperfections will easily undergo failure due to global buckling under thermal stress and internal pressure. Therefore, it is vitally important to study the global buckling of the submarine pipeline with initial imperfections. On the basis of the characteristics of the initial imperfections, the global lateral buckling of submarine pipelines was analyzed. Based on the deduced analytical solutions for the global lateral buckling, effects of temperature difference and properties of foundation soil on pipeline buckling were analyzed. The results show that the snap buckling is predominantly governed by the amplitude value of initial imperfection; the triggering temperature difference of Mode I for pipelines with initial imperfections is higher than that of Mode I1; a pipeline with a larger friction coefficient is safer than that with a smaller one; pipelines with larger initial imperfections are safer than those with smaller ones.展开更多
The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance ...The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance and sediment transport. Three types of mathematical models were selected. Models of type one and two are fairly general, but require a considerable number of boundary conditions, which related to each size range of sediments. It can be a handicap during rivers studies which are not very well followed in terms of experimental measurements. Also, the use of complex models is not always founded. But then, the model of type three requires a limited number of boundary conditions and solves only a system of three equations at each time step. It allows a considerable saving in calculating times.展开更多
Electroless Cu plating was used for flake G powder and CNTs, Cu-G-CNTs (copper/graphite/carbon nanotubes) composites were manufactured by means of powder metallurgical method. The influences of CNTs on the mechanica...Electroless Cu plating was used for flake G powder and CNTs, Cu-G-CNTs (copper/graphite/carbon nanotubes) composites were manufactured by means of powder metallurgical method. The influences of CNTs on the mechanical properties, conductivity properties, friction, and wear performance of the composite were examined. The results indicate that adding a small amount of CNTs can improve comprehensive property of the composites, especially mechanical property. However, excessive CNT, which is easily winding reunion and grain boundary seg- regation, results in performances degradation.展开更多
With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of...With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.展开更多
Due to its highly favorable physical and chemical properties,titanium and titanium alloy are widely used in a variety of industries.Because of the low output of a single batch,plate cold rolling without tension is the...Due to its highly favorable physical and chemical properties,titanium and titanium alloy are widely used in a variety of industries.Because of the low output of a single batch,plate cold rolling without tension is the most common rolling production method for titanium alloy.This method is lack of on-line thickness closed-loop control,with carefully thickness setting models for precision.A set of high-precision thickness setting models are proposed to suit the production method.Because of frequent variations in rolling specification,a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method.The deformation resistance and friction factor,the primary factors which affect model precision,are considered as the objectives of statistical modeling.Firstly,the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted.Additionally,a support vector machine(SVM)is applied to the modeling of the deformation resistance and friction factor.The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling,and then thickness precision is found consistently to be within 3%,exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data.Excellent application performance is obtained.The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.展开更多
Severe production conditions in coal mines cause damage and failure problems with the oriented sliding boots of the mechanical shearer. Wear has been an especially vexing problem. Plasma cladding methods were used to ...Severe production conditions in coal mines cause damage and failure problems with the oriented sliding boots of the mechanical shearer. Wear has been an especially vexing problem. Plasma cladding methods were used to study optimized sliding boot design. By cladding the substrate steel the surface may be made of a material more resistant to wear. The iron based alloy Cr4MnTi was coated onto a modified 45 steel matrix material in these tests. The results show that the alloy cladding layer is high strength, has high hardness, and is highly resistant to wear. After hardening and tempering, 45 steel substrate has great tenacity so the combined structure meets the performance requirements for the construction of shearer sliding boots.展开更多
Previous studies on pipe friction resistance are mainly concentrated in the soil layer,whereas the study on that in the rock stratum is limited.To estimate the pipe friction resistance in the rock stratum,the calculat...Previous studies on pipe friction resistance are mainly concentrated in the soil layer,whereas the study on that in the rock stratum is limited.To estimate the pipe friction resistance in the rock stratum,the calculation models of pipe friction resistance and their applica-tion conditions were compared first.Then the friction resistance calculation model for pipe jacking in the rock stratum was established and simplified.Lastly,the measured(FM)and the computed(FN)pipe friction resistance was compared to validate the simplified friction resistance calculation model.The following conclusions can be drawn:(1)The existing calculation methods of pipe friction resistance can be well verified in the soil layer but cannot be applied in the rock stratum.(2)Sediment,pipe–rock friction coefficient and mud buoyancy are the main factors affecting the pipe friction resistance in long-distance rock pipe jacking engineering.(3)The simplified calculation model established by Deng et al.can estimate the pipe friction resistance in different rock strata at different jacking stages with satisfac-tory outcomes.Further research on the pipe-rock friction coefficient in different rock strata with different pipe–rock contact conditions merits further investigation to better predict the pipe friction resistance in the rock stratum.The research results have certain practica-bility and can provide a reference for similar projects.展开更多
In this paper,the effect of water and air fluids on the behavior of a planing catamaran in calm water was studied separately in calm water by using experimental and numerical methods.Experiments were conducted in a to...In this paper,the effect of water and air fluids on the behavior of a planing catamaran in calm water was studied separately in calm water by using experimental and numerical methods.Experiments were conducted in a towing tank over the Froude number range of 0.49–2.9 with two degrees of freedom.The model vessel displacement of 5.3 kg was implemented in experimental tests.Craft behavior was evaluated at the displacements of 5.3,4.6,and 4 kg by using the numerical method.The numerical simulation results for the hull’s resistance force were validated with similar experimental data.The fluid volume model was applied to simulate two-phase flow.The SST k-ωturbulence model was used to investigate the effect of turbulence on the catamaran.The results showed that in the planing mode,the contribution of air to pressure resistance increased by 55%,40%,and 60%at the mentioned displacements,whereas the contribution of air to friction resistance was less than 15%on average.The contribution of the air to the total lift force at the abovementioned displacements exceeded 70%,60%,and 50%in the planing mode but was less than 10%in the displacement mode.At the displacements of 5.3 and 4 kg,the area under the effect of maximum pressure moved around the center of gravity and caused porpoising longitudinal instability at the Froude numbers of 2.9 and 2.4,respectively.However,at the displacement of 4.6 kg,this effect did not occur,and the vessel maintained its stability.展开更多
A benzotriazole-containing derivative was synthesized via the Mannich reaction.The structure was characterized by NMR spectroscopy.By utilizing computational chemistry and molecular simulation,the calculation and mapp...A benzotriazole-containing derivative was synthesized via the Mannich reaction.The structure was characterized by NMR spectroscopy.By utilizing computational chemistry and molecular simulation,the calculation and mapping of atomic charge and frontier molecular orbitals with complex structure of the borate were carried out.The acid number of BTBE(nitrogen-containing heterocyclic borate)was determined by the standard test method for acid number and the open observation method.The results showed that BTBE had a low initial acid number,because the acid number was changed only after 72 hours of hydrolysis,and it was negative after the hydrolysis reached 120 hours.The extreme-pressure friction resistance of BTBE and other four base oils was also determined.For 5 kinds of base oils,the friction experiment was carried out under a load of 30 kgf,and the BTBE showed a lowest wear scar diameter(0.365 mm)along with a highest maximum non-seizure load.The results showed that the EP friction resistance of BTBE was stronger than that of other four base oils under the same test conditions.The results of hydrolysis performance showed that the synthesized nitrogencontaining heterocyclic borate had a high resistance to hydrolysis,while demonstrating broad application prospects.展开更多
文摘In open-ended piles, inner friction is developed between inner pile shaf and the inner soil. Inner frictional resistance depends largely on the degree of soil plugging, which is influenced by many factors including pile diameter, relative density and end conditions of piles. In this paper, effects of inner sleeves on inner frictional resistance are discussed. The experiments were conducted on a medium-dense sandy ground using laboratory-scale piles. It was observed that the piles penetrated under partially-plugged or unplugged state. The results suggest that inner fiictional resistance, Qin increases with sleeve height, l linearly and requires 2D (D is pile outer diameter) of l to produce a large as 50% of Qt by Qin (Qt is total resistance). The results also indicate that bearing capacity increases with wall thickness at the pile tip, which can be attributed to the increase in annular area. The results also indicate that soil plug height is independent of sleeve height. The results also reveal that the penetration of straight piles is closer to unplugged state than the sleeved piles. The results of incremental filling ratio and plug length ratio also indicate that the degree of soil plugging is affected by the sleeve height.
文摘It is recognized that for turbulent flow inside a duct of angular cross section,devi- ation will take place if the hydraulic diameter is taken as the equivalent diameter to calculate the mean friction coefficient of the duct wall.It still remains a question to determine the extent of the deviation as no common formula is available and only a few cross sections have been tested. This paper presents an approach which takes the angle area of the angular cross section as an ad- dition to the angle-less cross section,analyses and calculates the size of laminar flow area of the angle area,quantifies the amount of deviation of using hydraulic diameter as the equivalent di- ameter and finally obtains the formula for calculating the turbulent friction coefficients of the ducts of arbitrary angular cross sections.The formula derived is universally applicable to cross sections with arbitrary number of angles and arbitrary forms of angles,i.e.,arbitrary angular cross sections.Experience shows it is easy to use and the result obtained has a good agreement with physical mechanism and test measurements.
文摘This paper deal with the frictional resistance characteristics of gas liquid two phase flow in vertical upward helical coiled tubes under the system pressure 0.1 0.6MPa. By means of dimension analysis and π theorem, the correlation formulas were obtained for calculating the frictional resistance coefficients of gas liquid two phase flow in helical coiled tubes. The calculated results agree well with the experimental results.
文摘Recently,computational fluid dynamics(CFD)approaches have been effectively used by researchers to calculate the resistance characteristics of ships that have rough outer surfaces.These approaches are mainly based on modifying wall functions using experimentally pre-determined roughness functions.Although several recent studies have shown that CFD can be an effective tool to calculate resistance components of ships for different roughness conditions,most of these studies were performed using the same ship geometry(KRISO Container Ship).Thus,the effect of ship geometry on the resistance characteristics of rough hull surfaces is worth investigating.In this study,viscous resistance components of four different ships are calculated for different roughness conditions.First,flat plate simulations are performed using a previous experimental study for comparison purposes.Then,the viscous resistance components of three-dimensional hulls are calculated.All simulations are performed using two different turbulence models to investigate the effect of the turbulence model on the results.An examination of the distributions of the local skin friction coefficients of the DTMB 5415 and Series 60 showed that the plumpness of the bow form has a significant effect on the increase in frictional resistance with increasing roughness.Another significant finding of the study is that viscous pressure resistance is directly affected by the surface roughness.For all geometries,viscous pressure resistances showed a significant increase for highly rough surfaces.
文摘This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.
文摘This study presents a simple numerical method that can be used to evaluate the hydrodynamic performances of antifouling paints.Steady Reynolds-averaged Navier-Stokes equations were solved through a finite volume technique,whereas roughness was modeled with experimentally determined roughness functions.First,the methodology was validated with previous experimental studies with a flat plate.Second,flow around the Kriso Container Ship was examined.Lastly,full-scale results were predicted using Granville’s similarity law.Results indicated that roughness has a similar effect on the viscous pressure resistance and frictional resistance around a Reynolds number of 10^7.Moreover,the increase in frictional resistance due to roughness was calculated to be approximately 3%-5%at the ship scale depending on the paint.
基金Financial support from the NSFC-ICIMOD(41661144041)NSFC(Grant No.41772312)+1 种基金Key Research and Development Program(2017SZ0041)Sichuan Province Science and Technology Support Project(2016SZ0067)
文摘To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled as a Newtonian fluid. The interaction between solid and liquid phases, which plays a major role in debris flow movement, is assumed to consist of drag and buoyancy forces. The applicability of drag force formulas is discussed. Considering the complex interaction between debris flow and the bed surface, a combined friction boundary condition is imposed on the bottom, and this is also discussed. To solve the complex model equations, a numerical method with second-order accuracy based on the finite volume method is proposed. Several numerical experiments are performed to verify the feasibilities of model and numerical schemes. Numerical results demonstrate that different solid volume fractions substantially affect debris flow movement.
基金The project supported by the National Natural Science Foundation of China (10172070)
文摘The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper.The discussion includes the transient time depen- dency behaviors based on the analysis of the results obtained in conventional cyclic triaxial tests and cyclic torsional shear triaxial tests.It has been found that the dy- namic effective shear strength is composed of effective frictional resistance and viscous resistance,which are characterized by the strain rate dependent feature of strength magnitude,the coupling of consolidation stress with cyclic stress and the dependency of time needed to make the soil strength sufficiently mobilized,and can also be ex- pressed by the extended Mohr-Coulomb's law.The two strength parameters of the dynamic effective internal frictional angle φd and the dynamic viscosity coefficient η are determined.The former is unvaried for different number of cyclic loading,dy- namic stress form and consolidation stress ratio.And the later is unvaried for the different dynamic shear strain rate γt developed during the sand liquefaction,but increases with the increase of initial density of sand.The generalization of dynamic effective stress strength criterion in the 3-dimensional effective stress space is studied in detail for the purpose of its practical use.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos.51309040, 51379033, 51209027, 51309025), Open Research Fund of State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University) (Grant No.1402), and Fundamental Research Fund for the Central Universities (DMU3132015089).
文摘In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.
基金Funded by the National Natural Science Foundation of China(No.51008075)the National Natural Science Foundation of China(No.51378006)
文摘Based on laboratory tests and field materials evaluation, the inner frictional resistance of SMA skeleton was investigated and then the degradation behaviour of SMA skeleton was characterized for recycling purpose. Inner frictional resistance test was designed to investigate the skeleton characteristics of SMA aggregate mixture. The experimental results indicate that SMA skeleton has much stronger inner frictional resistance than AC skeleton, and coarse aggregates provide main contributions to the inner frictional resistance of SMA skeleton. Crushing test and superpave gyratory compactor (SGC) test were designed to reveal the degradation behaviour of SMA skeleton. To verify the laboratory characterization, field materials were also evaluated. The results indicate that the degradation of SMA skeleton is not random but has fixed internal trend, especially the 4.75mm aggregate plays a key role in the graded aggregates. Based on the testing results, it can be concluded that long-term repeated loading can cause degradation of SMA skeleton. However, the gradation does not keep deteriorating under repeated loading. When the inner frictional resistance is small enough, outside pressure will cause flow deformation of skeleton instead of degradation. Thus, well-designed SMA aggregate mixture is valuable for recycling after long-term in service. And it is important to restore the skeleton, especially the coarse aggregate part.
文摘The microscopic physical properties of Hardened Cement Paste (HCP) surfaces were evaluated by using Scanning Probe Microscopy (SPM). The cement pastes were cured under a hydrostatic pressure of 400 MPa and the contacting surfaces with a slide glass during the curing were studied. Scanning Electron Microscope (SEM) observation at a magnification of 7000 revealed smooth surfaces with no holes. The surface roughness calculated from the SPM measurement was 4 nm. The surface potential and the frictional force measured by SPM were uniform throughout the measured area 24 h after the curing. However, spots of low surface potential and stains of low frictional force and low viscoelasticity were observed one month after curing. This change was attributed to the carbonation of hydrates.
基金Project(51021004)supported by Innovative Research Groups of the National Natural Science Foundation of ChinaProject(NCET-11-0370)supported by Program for New Century Excellent Talents in Universities of China+1 种基金Project(40776055)supported by the National Natural Science Foundation of ChinaProject(1002)supported by State Key Laboratory of Ocean Engineering Foundation,China
文摘Buckling of submarine pipelines under thermal stress is one of the most important problems to be considered in pipeline design. And pipeline with initial imperfections will easily undergo failure due to global buckling under thermal stress and internal pressure. Therefore, it is vitally important to study the global buckling of the submarine pipeline with initial imperfections. On the basis of the characteristics of the initial imperfections, the global lateral buckling of submarine pipelines was analyzed. Based on the deduced analytical solutions for the global lateral buckling, effects of temperature difference and properties of foundation soil on pipeline buckling were analyzed. The results show that the snap buckling is predominantly governed by the amplitude value of initial imperfection; the triggering temperature difference of Mode I for pipelines with initial imperfections is higher than that of Mode I1; a pipeline with a larger friction coefficient is safer than that with a smaller one; pipelines with larger initial imperfections are safer than those with smaller ones.
文摘The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance and sediment transport. Three types of mathematical models were selected. Models of type one and two are fairly general, but require a considerable number of boundary conditions, which related to each size range of sediments. It can be a handicap during rivers studies which are not very well followed in terms of experimental measurements. Also, the use of complex models is not always founded. But then, the model of type three requires a limited number of boundary conditions and solves only a system of three equations at each time step. It allows a considerable saving in calculating times.
基金financially supported by the National Nature Science Foundation of China (No. 51003060)the Distinguished Young Talents in Higher Education of Guangdong China (No. 2012LYM_0118)the Shenzhen Innovation and Technology Commission under the Strategic Emerging Industries Development Project (No. ZDSY20120612094418467)
文摘Electroless Cu plating was used for flake G powder and CNTs, Cu-G-CNTs (copper/graphite/carbon nanotubes) composites were manufactured by means of powder metallurgical method. The influences of CNTs on the mechanical properties, conductivity properties, friction, and wear performance of the composite were examined. The results indicate that adding a small amount of CNTs can improve comprehensive property of the composites, especially mechanical property. However, excessive CNT, which is easily winding reunion and grain boundary seg- regation, results in performances degradation.
基金Project(52068004)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,ChinaProject(AB19245018)supported by Key Research Projects of Guangxi Province,China。
文摘With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.
基金Supported by National Natural Science Foundation of China(Grant No.51304017)National Key Technology R&D Program of the 12th Five-year Plan of China(Grant Nos.2012BAF04B02,2011BAE23B04)Fundamental Research Funds for Central Universities,China(Grant No.FRF-SD-12-013B)
文摘Due to its highly favorable physical and chemical properties,titanium and titanium alloy are widely used in a variety of industries.Because of the low output of a single batch,plate cold rolling without tension is the most common rolling production method for titanium alloy.This method is lack of on-line thickness closed-loop control,with carefully thickness setting models for precision.A set of high-precision thickness setting models are proposed to suit the production method.Because of frequent variations in rolling specification,a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method.The deformation resistance and friction factor,the primary factors which affect model precision,are considered as the objectives of statistical modeling.Firstly,the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted.Additionally,a support vector machine(SVM)is applied to the modeling of the deformation resistance and friction factor.The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling,and then thickness precision is found consistently to be within 3%,exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data.Excellent application performance is obtained.The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.
基金Financial support for this work, provided by the fundingsupport: the National Natural Science Foundation General Projects(No. 51075387)the National "Eleventh Five-Year" Plan Major Projects supported by the National Science and Technology (No.2008BAB36B02)
文摘Severe production conditions in coal mines cause damage and failure problems with the oriented sliding boots of the mechanical shearer. Wear has been an especially vexing problem. Plasma cladding methods were used to study optimized sliding boot design. By cladding the substrate steel the surface may be made of a material more resistant to wear. The iron based alloy Cr4MnTi was coated onto a modified 45 steel matrix material in these tests. The results show that the alloy cladding layer is high strength, has high hardness, and is highly resistant to wear. After hardening and tempering, 45 steel substrate has great tenacity so the combined structure meets the performance requirements for the construction of shearer sliding boots.
基金supported by the National Natural Science Foundation of China(Grant No.12102230)the National Key Research and Development Program of China(Grant No.2018YFC1504802)+1 种基金the Natural Science Foundation Project of Chongqing(Grant No.cstc2018jscx-mszdX0071)the China Postdoctoral Science Foundation(Grant No.2022M711862).
文摘Previous studies on pipe friction resistance are mainly concentrated in the soil layer,whereas the study on that in the rock stratum is limited.To estimate the pipe friction resistance in the rock stratum,the calculation models of pipe friction resistance and their applica-tion conditions were compared first.Then the friction resistance calculation model for pipe jacking in the rock stratum was established and simplified.Lastly,the measured(FM)and the computed(FN)pipe friction resistance was compared to validate the simplified friction resistance calculation model.The following conclusions can be drawn:(1)The existing calculation methods of pipe friction resistance can be well verified in the soil layer but cannot be applied in the rock stratum.(2)Sediment,pipe–rock friction coefficient and mud buoyancy are the main factors affecting the pipe friction resistance in long-distance rock pipe jacking engineering.(3)The simplified calculation model established by Deng et al.can estimate the pipe friction resistance in different rock strata at different jacking stages with satisfac-tory outcomes.Further research on the pipe-rock friction coefficient in different rock strata with different pipe–rock contact conditions merits further investigation to better predict the pipe friction resistance in the rock stratum.The research results have certain practica-bility and can provide a reference for similar projects.
文摘In this paper,the effect of water and air fluids on the behavior of a planing catamaran in calm water was studied separately in calm water by using experimental and numerical methods.Experiments were conducted in a towing tank over the Froude number range of 0.49–2.9 with two degrees of freedom.The model vessel displacement of 5.3 kg was implemented in experimental tests.Craft behavior was evaluated at the displacements of 5.3,4.6,and 4 kg by using the numerical method.The numerical simulation results for the hull’s resistance force were validated with similar experimental data.The fluid volume model was applied to simulate two-phase flow.The SST k-ωturbulence model was used to investigate the effect of turbulence on the catamaran.The results showed that in the planing mode,the contribution of air to pressure resistance increased by 55%,40%,and 60%at the mentioned displacements,whereas the contribution of air to friction resistance was less than 15%on average.The contribution of the air to the total lift force at the abovementioned displacements exceeded 70%,60%,and 50%in the planing mode but was less than 10%in the displacement mode.At the displacements of 5.3 and 4 kg,the area under the effect of maximum pressure moved around the center of gravity and caused porpoising longitudinal instability at the Froude numbers of 2.9 and 2.4,respectively.However,at the displacement of 4.6 kg,this effect did not occur,and the vessel maintained its stability.
文摘A benzotriazole-containing derivative was synthesized via the Mannich reaction.The structure was characterized by NMR spectroscopy.By utilizing computational chemistry and molecular simulation,the calculation and mapping of atomic charge and frontier molecular orbitals with complex structure of the borate were carried out.The acid number of BTBE(nitrogen-containing heterocyclic borate)was determined by the standard test method for acid number and the open observation method.The results showed that BTBE had a low initial acid number,because the acid number was changed only after 72 hours of hydrolysis,and it was negative after the hydrolysis reached 120 hours.The extreme-pressure friction resistance of BTBE and other four base oils was also determined.For 5 kinds of base oils,the friction experiment was carried out under a load of 30 kgf,and the BTBE showed a lowest wear scar diameter(0.365 mm)along with a highest maximum non-seizure load.The results showed that the EP friction resistance of BTBE was stronger than that of other four base oils under the same test conditions.The results of hydrolysis performance showed that the synthesized nitrogencontaining heterocyclic borate had a high resistance to hydrolysis,while demonstrating broad application prospects.