期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Heat transfer and friction factor of Therminol liquid phase heat transfer fluid in a ribbed tube 被引量:2
1
作者 Weiguo Xu Guodong Liu +3 位作者 Qinghong Zhang Shuai Wang Huilin Lu Heping Tan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1343-1351,共9页
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an... Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid. 展开更多
关键词 Ribbed tube heat transfer fluid Friction factor Experiments Numerical simulations
下载PDF
PHYSICAL SIMULATION OF INTERFACIAL CONDITIONS IN HOT FORMING OF STEELS 被引量:8
2
作者 Y. H. Li M. Krzyzanowski J. H. Beynon and C. M. Sellars IMMPETUS( Institute for Microstructural and Mechanical Process Engineering: The University of Sheffield, Sheffield SI 3JD, UK) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期359-368,共10页
In the last few years,substantial experimental simulation and mumerical modelling hare been carried out in IMMPETUS to characterise the interfacial heat transfer and friction conditions during hot forging and rolling ... In the last few years,substantial experimental simulation and mumerical modelling hare been carried out in IMMPETUS to characterise the interfacial heat transfer and friction conditions during hot forging and rolling of steels. Emphasis has been placed on the influence of the oxide scale which forms on the steel workpiece. In the present paper, the experimental methods used for investigating interfacial heat transfer and friction conditions are described. Theses include hot flat rolling of steel slabs and hot axi- symmetric forging of steel cylinders and rings.Temperature measurements and computations demon- strate that for similar conditions, similar conditions, the effective interfacial heat transfer coefficients (IHTC) derived for hot rolling are significantly higher than those for forging, mainly due to the contribution of scale cracking during rolling. On the basis of experimental observations and numerical analysis,physical models for interfacial heat transfer in forging and rolling have been established. In addition, hot' sandwich' rolling and hot tensile tests with finite element modelling have been carried out to evaluate the hot ductility of the oxide scale.The results indicate that the defomation, cracking and decohesion behaviour of the oxide scale depend on deformation temperature, strain and relative strengths of the scale layer and scale - steel interface.Finaly, friction results from hot ring compression tests and from hot rolling with forward/backward slip measurements are reported. 展开更多
关键词 interfacial heat transfer friction oxide scale hot rolling hot forging hot tensile testing
下载PDF
Computational fluid dynamics simulation of friction stir welding:A comparative study on different frictional boundary conditions 被引量:6
3
作者 Gaoqiang Chen Qingxian Ma +3 位作者 Shuai Zhang Jianjun Wu Gong Zhang Qingyu Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期128-134,共7页
Numerical simulation based on computational fluid dynamics (CFD) is a useful approach for quantitatively investigating the underlying thermal-mechanical conditions during FSW, such as temperature field and material ... Numerical simulation based on computational fluid dynamics (CFD) is a useful approach for quantitatively investigating the underlying thermal-mechanical conditions during FSW, such as temperature field and material deformation field. One of the critical issues in CFD simulation of FSW is the use of the frictional boundary condition, which represents the friction between the welding tool and the workpiece in the numerical models. In this study, three-dimensional numerical simulation is conducted to analyze the heat transfer and plastic deformation behaviors during the FSW of AA2024. For comparison purposes, both the boundary velocity (BV) models and the boundary shear stress (BSS) models are employed in order to assess their performances in predicting the temperature and material deformation in FSW. It is interesting to note that different boundary conditions yield similar predictions on temperature, but quite different predictions on material deformation. The numerical predictions are compared with the experimental results. The predicted deformation zone geometry by the BSS model is consistent with the experimental results while there is large difference between the predictions by the BV models and the experimental measurements. The fact that the BSS model yields more reasonable predictions on the deformation zone geometry is attributed to its capacity to automatically adjust the contact state at the tool/workpiece interface. Based on the favorable predictions on both the temperature field and the material deformation field, the BSS model is suggested to have a better performance in numerical simulation of FSW than the BV model. 展开更多
关键词 Friction stir welding Numerical simulation frictional boundary condition heat transfer Material deformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部