In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network techno...In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.展开更多
Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under V...Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under Vehicle-to-Vehicle(V2V)communications is critical.There are two main differences concluded by comparing driving risk assessment under the CV environment with traditional ones:(1)the CV environment provides high-resolution and multi-dimensional data,e.g.,vehicle trajectory data,(2)Rare existing studies can comprehensively address the heterogeneity of the vehicle operating environment,e.g.,the multiple interacting objects and the time-series variability.Hence,this study proposes a driving risk assessment framework under the CV environment.Specifically,first,a set of time-series top views was proposed to describe the CV environment data,expressing the detailed information on the vehicles surrounding the subject vehicle.Then,a hybrid CNN-LSTM model was established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the time-series variability of the driving environment.It is proved that this model can reach an AUC of 0.997,outperforming the existing machine learning algorithms.This study contributes to the improvement of driving risk assessment under the CV environment.展开更多
Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicl...Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experi...Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.展开更多
To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and...To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.展开更多
With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is ...With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.展开更多
With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)...With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.展开更多
In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources ma...In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources making it difficult to run on computers with poor performance.Therefore,obtaining more efficient feature information of target image or video with better accuracy on computers with limited arithmetic power becomes the main goal of this research.In this paper,a lightweight densely connected,and deeply separable convolutional network(DCDSNet)algorithmis proposed to achieve this goal.Visual Geometry Group(VGG)model is improved by utilizing the convolution instead of the fully connected module,the deeply separable convolution module,and the densely connected network module,with the first two modules reducing the parameters and the third module allowing the algorithm to have more features in a limited number of parameters.The algorithm achieves better results in the mine vehicle recognition dataset.Experiments show that the recognition accuracy is improved by 4.41% compared to VGG19 and the amount of parameters is reduced by 71% compared to VGG19.展开更多
The highway capacity manual(HCM)provides a formula to calculate the heavy vehicle adjustment factor(fHV)as a function of passenger car equivalent factors for the heavy vehicle(ET).However,a significant drawback is tha...The highway capacity manual(HCM)provides a formula to calculate the heavy vehicle adjustment factor(fHV)as a function of passenger car equivalent factors for the heavy vehicle(ET).However,a significant drawback is that the methodology was established solely based on human-driven passenger cars(HDPC)and human-driven heavy vehicles(HDHV).Due to automated passenger cars(APCs),a new adjustment factor(fAV)might be expected.This study simulated traffic flows at different percentages of HDHVs and APCs to investigate the impacts of HDHVs and APCs on freeway capacity by analyzing their influence on fHV and fAV values.The simulation determined observed adjustment factors at different percentages of HDHVs and APCs(fobserved).The HCM formula was used to calculate(fHCM).Modifications to the HCM formula are proposed,and vehicle adjustment factors due to HDHVs and APCs were calculated(fproposed).Results showed that,in the presence of APCs,while fobserved and fHCM were statistically significantly different,fobserved and fproposed were statistically equal.Hence,this study recommends using the proposed formula when determining vehicle adjustment factors(fproposed)due to HDHVs and APCs in the traffic stream.展开更多
Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication net...Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication network and become one of the elements in the network.Over recent decades,in the area of intelligent transportation,pedestrian and transport infrastructure are connected to the communication network to improve the driving safety and traffic efficiency which is known as the ICV(Intelligent Connected Vehicle).This paper summarizes the global ICV progresses in the past decades and the latest activities of ICV in China,and introduces various aspects regarding the recent development of the ICV,including industry development,spectrum and standard,at the same time.展开更多
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/...An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.展开更多
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ...The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
Back of queue crashes on Interstates are a major concern for all state transportation departments. In 2020, Indiana DOT begin deploying queue warning trucks with message boards, flashers and digital alerts that could ...Back of queue crashes on Interstates are a major concern for all state transportation departments. In 2020, Indiana DOT begin deploying queue warning trucks with message boards, flashers and digital alerts that could be transmitted to navigation systems such as Waze. This study reports on the deployment and impact evaluation of digital alerts on motorist’s assistance patrols and 19 Queue trucks in Indiana. The motorist assistance patrol evaluation is provided qualitatively. A novel analysis of queue warning trucks equipped with digital alerts was conducted during the months of May-July in 2021 using connected vehicle data. This new data set reports locations of anonymous hard-braking events from connected vehicles on the Interstate. Hard-braking events were tabulated for when queueing occurred with and without the presence of a queue warning truck. Approximately 370 hours of queueing with queue trucks present and 58 hours of queueing without queue truck<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> present were evaluated. Hard-braking events were found to decrease approximately 80% when queue warning trucks were used to alert motorists of impending queues.</span>展开更多
Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual matu...Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.展开更多
The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for...The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.展开更多
Connected vehicles for safety and traffic efficient applications require device-to-device connections supporting one-to-many and many-to-many communication, precise absolute and relative positioning and distributed co...Connected vehicles for safety and traffic efficient applications require device-to-device connections supporting one-to-many and many-to-many communication, precise absolute and relative positioning and distributed computing. Currently, the 5.9 GHz Dedicated Short Range Communications (DSRC) and 4G-Long-Term Evolution (LTE) are available for connected vehicle services. But both have limitations in reliability or latency over large scale field operational tests and deployment. This paper proposes the device-to-device (D2D) connectivity framework based on publish-subscribe architecture, with Message Queue Telemetry Transport (MQTT) protocol. With the publish-subscribe communication paradigm, road mobile users can exchange data and information in moderate latency and high reliability manner, having the potential to support many Vehicle to Everything (V2X) applications, including vehicle to vehicle (V2V), vehicle to roadside infrastructure (V2I), and vehicle to bicycle (V2B). The D2D data exchanges also facilitate computing for absolute and relative precise real-time kinematic (RTK) posi-tioning. Vehicular experiments were conducted to evaluate the performance of the proposed publish-subscribe MQTT protocols in term of latency and reliability. The latency of data exchanges is measured by One-trip-time (OTT) and the reliability is measured by the packet loss rate (PLR). Our results show that the latency of GNSS raw data exchanges between vehicles through 4G cellular networks at the rate of 10 Hz and the data rates of 10 kbps are less than 300 ms while the reliability is over 96%. Vehicular positioning experiments have also shown that vehicles can exchange raw GNSS data and complete mov-ing-base RTK positioning with the positioning availability of 98%.展开更多
In most framed structures anticipated deformations in accordance with current codes fall into acceptable limit states, whereas they go through substantial residual deformations in the aftermath of severe ground motion...In most framed structures anticipated deformations in accordance with current codes fall into acceptable limit states, whereas they go through substantial residual deformations in the aftermath of severe ground motions. These structures seem unsafe to occupants since static imminent instability in the immediate post-earthquake may be occurred. Moreover, rehabilitation costs of extensive residual deformations are not usually reasonable. Apparently, there is a lack of detailed knowledge related to reducing residual drift techniques when code-based seismic design is considered. In this paper, reduced beam section connections as a positive approach are taken action to mitigate the huge amount of residual drifts which are greatly amplified by P-Δ effects. To demonstrate the efficacy of RBS, a sixteen-story moment resisting frame is analyzed based on a suite of 8 single-component near field records which have been scaled according to the code provisions. The results are then processed to assess the effects of RBS detailing on drift profile, maximum drift, and residual drift. Besides, a special emphasis is given to estimate overall trend towards drift accumulation in each story in the presence of RBS assembly. A main conclusion is that using this connection predominantly alleviates the adverse effects of P-Δ on amplifying residual drifts.展开更多
Road safety has long been considered as one of the most important issues.Numerous studies have been conducted to investigate crashes with significant progress,whereas most of the work concentrates on the lifespan peri...Road safety has long been considered as one of the most important issues.Numerous studies have been conducted to investigate crashes with significant progress,whereas most of the work concentrates on the lifespan period of roadways and safety influencing factors.This paper undertakes a systematic literature review from the crash procedure to identify the state-of-the-art knowledge,advantages and disadvantages of crash risk,crash prediction,crash prevention and safety of connected and autonomous vehicles(CAVs).As a result of this literature review,substantive issues in general,data source and modeling selection are discussed,and the outcome of this study aims to provide the summary of crash knowledge with potential insight into both traditional and emerging aspects,and guide the future research direction in safety.展开更多
文摘In responding to the“dual carbon”strategy,intelligent networked new energy vehicle technology plays a crucial role.This type of vehicle combines the advantages of new energy technology and intelligent network technology,effectively reduces carbon emissions in the transportation sector,improves energy utilization efficiency,and contributes to the green transportation system through intelligent transportation management and collaborative work between vehicles,making significant contributions.This article aims to explore the development of intelligent network-connected new energy vehicle technology and applications under the dual-carbon strategy and lay the foundation for the future development direction of the automotive industry.
基金sponsored by the Zhejiang Province Science and Technology Major Project of China(No.2021C01011)the National Natural Science Foundation of China(NSFC)(No.52172349)the China Scholarship Council(CSC).
文摘Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under Vehicle-to-Vehicle(V2V)communications is critical.There are two main differences concluded by comparing driving risk assessment under the CV environment with traditional ones:(1)the CV environment provides high-resolution and multi-dimensional data,e.g.,vehicle trajectory data,(2)Rare existing studies can comprehensively address the heterogeneity of the vehicle operating environment,e.g.,the multiple interacting objects and the time-series variability.Hence,this study proposes a driving risk assessment framework under the CV environment.Specifically,first,a set of time-series top views was proposed to describe the CV environment data,expressing the detailed information on the vehicles surrounding the subject vehicle.Then,a hybrid CNN-LSTM model was established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the time-series variability of the driving environment.It is proved that this model can reach an AUC of 0.997,outperforming the existing machine learning algorithms.This study contributes to the improvement of driving risk assessment under the CV environment.
基金China Tele-com Research Institute Project(Grants No.HQBYG2200147GGN00)National Key R&D Program of China(2020YFB1807600)National Natural Science Foundation of China(NSFC)(Grant No.62022020).
文摘Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金supported by the National natural Science Foundation of China [grant numbers 12172198, 11272189 and 52078283]Youth Innovation Technology Project of Higher School in Shandong Province [grant number 2019KJG015]。
文摘Based on the background of structural protection and Disaster Reduction Engineering, the dynamic behaviour and failure mechanism of restrained beams in portal steel frames in localised fire are investigated via experimental measurement and numerical simulation techniques. Comprehensive parametric studies are carried out to discuss the influence of end connection types, temperature, impact velocity,impact mass and span-to-depth ratio(SDR) on the dynamic response of the beams. The characteristics of deformation, internal force and energy distribution about the restrained beams and its joints are investigated. A temperature dependent criterion for evaluating the frame joint performance is proposed to measure the degree of performance degradation and impact resistance of the joint. The dynamic displacement amplification factor in different temperature environments are proposed for the different beam end constraint types and SDRs. Results of the experimental and numerical analysis show that the welded connection(WC) of three typical joint types is the strongest, and the extended endplate connection(EEC) is the weakest in terms of the impact resistance performance. With regard to the failure mode of the joint, the failure positions of the WC and the welded-bolted connection are located in the inner web of the column. Meanwhile, the EEC is located in the connection position between the beam and the endplate. Three different internal force stages and two obvious critical temperature boundaries of the restrained beams emerge with the increase in temperature, and they have significant characteristics in terms of deformation trend, internal force transfer and energy distribution. During the impact, a phenomenon known as “compression arch action” develops into “catenary action” with the increase in deflection in the frame beam mechanism.
基金Project(50779032)supported by the National Natural Science Foundation of ChinaProject(20090451330)supported by the Postdoctoral Foundation of ChinaProject(BS2013SF007)supported by Shandong Scientific Research Award Foundation for Outstanding Young Scientists,China
文摘To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3103200).
文摘With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.
基金supported by the National Natural Science Foundation of China(Grant No.62072031)the Applied Basic Research Foundation of Yunnan Province(Grant No.2019FD071)the Yunnan Scientific Research Foundation Project(Grant 2019J0187).
文摘With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.
基金supported by the open project of National Local Joint Engineering Research Center for Agro-Ecological Big Data Analysis and Application Technology,“Adaptive Agricultural Machinery Motion Detection and Recognition in Natural Scenes”,AE202210By the school-level key discipline of Suzhou University in China with No.2019xjzdxk12022 Anhui Province College Research Program Project of the Suzhou Vocational College of Civil Aviation,No.2022AH053155.
文摘In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources making it difficult to run on computers with poor performance.Therefore,obtaining more efficient feature information of target image or video with better accuracy on computers with limited arithmetic power becomes the main goal of this research.In this paper,a lightweight densely connected,and deeply separable convolutional network(DCDSNet)algorithmis proposed to achieve this goal.Visual Geometry Group(VGG)model is improved by utilizing the convolution instead of the fully connected module,the deeply separable convolution module,and the densely connected network module,with the first two modules reducing the parameters and the third module allowing the algorithm to have more features in a limited number of parameters.The algorithm achieves better results in the mine vehicle recognition dataset.Experiments show that the recognition accuracy is improved by 4.41% compared to VGG19 and the amount of parameters is reduced by 71% compared to VGG19.
文摘The highway capacity manual(HCM)provides a formula to calculate the heavy vehicle adjustment factor(fHV)as a function of passenger car equivalent factors for the heavy vehicle(ET).However,a significant drawback is that the methodology was established solely based on human-driven passenger cars(HDPC)and human-driven heavy vehicles(HDHV).Due to automated passenger cars(APCs),a new adjustment factor(fAV)might be expected.This study simulated traffic flows at different percentages of HDHVs and APCs to investigate the impacts of HDHVs and APCs on freeway capacity by analyzing their influence on fHV and fAV values.The simulation determined observed adjustment factors at different percentages of HDHVs and APCs(fobserved).The HCM formula was used to calculate(fHCM).Modifications to the HCM formula are proposed,and vehicle adjustment factors due to HDHVs and APCs were calculated(fproposed).Results showed that,in the presence of APCs,while fobserved and fHCM were statistically significantly different,fobserved and fproposed were statistically equal.Hence,this study recommends using the proposed formula when determining vehicle adjustment factors(fproposed)due to HDHVs and APCs in the traffic stream.
文摘Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication network and become one of the elements in the network.Over recent decades,in the area of intelligent transportation,pedestrian and transport infrastructure are connected to the communication network to improve the driving safety and traffic efficiency which is known as the ICV(Intelligent Connected Vehicle).This paper summarizes the global ICV progresses in the past decades and the latest activities of ICV in China,and introduces various aspects regarding the recent development of the ICV,including industry development,spectrum and standard,at the same time.
文摘An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core,under reversed cyclic loading.Six 2/3-scale interior beam-column subassemblies,one monolithic concrete specimen and five precast concrete specimens were tested.One precast specimen was a simple connection for a gravity load resistant design.Other precast specimens were developed with different attributes to improve their seismic performance.The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior.Failure of columns and joints could be prevented,and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends,close to the column faces.For the precast specimens,the splitting crack along the longitudinal lapped splice was a major failure.The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models.However,the dowel bars connected to the steel inserts were too short to develop a bond.The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.
基金National Key R&D Program of China under Grant No.2017YFC1500601National Natural Science Foundation of China under Grant Nos.51678541 and 51708523Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2016A01。
文摘The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
文摘Back of queue crashes on Interstates are a major concern for all state transportation departments. In 2020, Indiana DOT begin deploying queue warning trucks with message boards, flashers and digital alerts that could be transmitted to navigation systems such as Waze. This study reports on the deployment and impact evaluation of digital alerts on motorist’s assistance patrols and 19 Queue trucks in Indiana. The motorist assistance patrol evaluation is provided qualitatively. A novel analysis of queue warning trucks equipped with digital alerts was conducted during the months of May-July in 2021 using connected vehicle data. This new data set reports locations of anonymous hard-braking events from connected vehicles on the Interstate. Hard-braking events were tabulated for when queueing occurred with and without the presence of a queue warning truck. Approximately 370 hours of queueing with queue trucks present and 58 hours of queueing without queue truck<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> present were evaluated. Hard-braking events were found to decrease approximately 80% when queue warning trucks were used to alert motorists of impending queues.</span>
基金funded by the Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)of Zhang Jiang Laboratory and Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghai Rising Star Program(21QC1400900)Tongji–Westwell Autonomous Vehicle Joint Lab Project。
文摘Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2402002)Beijing Natural Science Foundation of China (Grant No.L223013)。
文摘The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.
文摘Connected vehicles for safety and traffic efficient applications require device-to-device connections supporting one-to-many and many-to-many communication, precise absolute and relative positioning and distributed computing. Currently, the 5.9 GHz Dedicated Short Range Communications (DSRC) and 4G-Long-Term Evolution (LTE) are available for connected vehicle services. But both have limitations in reliability or latency over large scale field operational tests and deployment. This paper proposes the device-to-device (D2D) connectivity framework based on publish-subscribe architecture, with Message Queue Telemetry Transport (MQTT) protocol. With the publish-subscribe communication paradigm, road mobile users can exchange data and information in moderate latency and high reliability manner, having the potential to support many Vehicle to Everything (V2X) applications, including vehicle to vehicle (V2V), vehicle to roadside infrastructure (V2I), and vehicle to bicycle (V2B). The D2D data exchanges also facilitate computing for absolute and relative precise real-time kinematic (RTK) posi-tioning. Vehicular experiments were conducted to evaluate the performance of the proposed publish-subscribe MQTT protocols in term of latency and reliability. The latency of data exchanges is measured by One-trip-time (OTT) and the reliability is measured by the packet loss rate (PLR). Our results show that the latency of GNSS raw data exchanges between vehicles through 4G cellular networks at the rate of 10 Hz and the data rates of 10 kbps are less than 300 ms while the reliability is over 96%. Vehicular positioning experiments have also shown that vehicles can exchange raw GNSS data and complete mov-ing-base RTK positioning with the positioning availability of 98%.
文摘In most framed structures anticipated deformations in accordance with current codes fall into acceptable limit states, whereas they go through substantial residual deformations in the aftermath of severe ground motions. These structures seem unsafe to occupants since static imminent instability in the immediate post-earthquake may be occurred. Moreover, rehabilitation costs of extensive residual deformations are not usually reasonable. Apparently, there is a lack of detailed knowledge related to reducing residual drift techniques when code-based seismic design is considered. In this paper, reduced beam section connections as a positive approach are taken action to mitigate the huge amount of residual drifts which are greatly amplified by P-Δ effects. To demonstrate the efficacy of RBS, a sixteen-story moment resisting frame is analyzed based on a suite of 8 single-component near field records which have been scaled according to the code provisions. The results are then processed to assess the effects of RBS detailing on drift profile, maximum drift, and residual drift. Besides, a special emphasis is given to estimate overall trend towards drift accumulation in each story in the presence of RBS assembly. A main conclusion is that using this connection predominantly alleviates the adverse effects of P-Δ on amplifying residual drifts.
基金supported by National Natural Science Foundation of China(No:72131008)National Key Research and Development Program(No:2022YFC3800103-03).
文摘Road safety has long been considered as one of the most important issues.Numerous studies have been conducted to investigate crashes with significant progress,whereas most of the work concentrates on the lifespan period of roadways and safety influencing factors.This paper undertakes a systematic literature review from the crash procedure to identify the state-of-the-art knowledge,advantages and disadvantages of crash risk,crash prediction,crash prevention and safety of connected and autonomous vehicles(CAVs).As a result of this literature review,substantive issues in general,data source and modeling selection are discussed,and the outcome of this study aims to provide the summary of crash knowledge with potential insight into both traditional and emerging aspects,and guide the future research direction in safety.