Cryogenic valves play a crucial role in the production and transportation of liquefied natural gas(LNG),and are primarily responsible for efficiently controlling the inflow and outflow of LNG and regulating pressure.H...Cryogenic valves play a crucial role in the production and transportation of liquefied natural gas(LNG),and are primarily responsible for efficiently controlling the inflow and outflow of LNG and regulating pressure.However,due to their operation in low-temperature and high-humidity environments,crucial components such as drip trays are susceptible to frosting,which may lead to LNG leakage,thereby causing severe safety incidents.In this study,the user-defined function(UDF)is employed to redevelop Fluent,which integrates the frost growth model with the Eulerian multiphase flow model,to conduct a quantitative analysis of frosting on drip trays of cryogenic valves.The effects of environmental parameters,such as wind speed,ambient temperature,air humidity,and cold surface temperature on the growth of the frost layer were analyzed.This study reveals a limiting wind speed between 1 m/s and 2 m/s.Upon reaching this limit speed,the growth of the frost layer reaches its maximum,and further increases in the wind speed have no significant effect on the growth of the frost layer.Furthermore,the influence of the change in the flow field on droplet impingement and freezing during the growth of the frost layer is considered through the coupling method of the kinematic characteristics of water droplets and the collection coefficient of water droplets.This study identifies the influence of different parameters on the droplet impact efficiency,leading to the modification of the frost layer on the drip tray.展开更多
New super-hydrophobic nanocomposite coatings were formed from modified nano-sized CaCO3 particles and polyacrylate at weight ratio of 9/1-8/2. SEM and XPS analysis indicated that such hydrophobicity could be attribute...New super-hydrophobic nanocomposite coatings were formed from modified nano-sized CaCO3 particles and polyacrylate at weight ratio of 9/1-8/2. SEM and XPS analysis indicated that such hydrophobicity could be attributed to the surface nano-microstructure and the surface enrichment of fluorine atoms. As the surface hydrophobicity increased, longer time was required for formation the initial frost, which makes super-hydrophobic coatings suitable for anti-frosting purpose.展开更多
Robust superhydrophobic surfaces with excellent capacities of repelling water and anti-frosting are of importance for many mechanical components.In this work,wear-resistant superhydrophobic surfaces were fabricated by...Robust superhydrophobic surfaces with excellent capacities of repelling water and anti-frosting are of importance for many mechanical components.In this work,wear-resistant superhydrophobic surfaces were fabricated by curing a mixture of polyurethane acrylate(PUA)coating and 1H,1H,2H,2H-Perfluorodecyltrichlorosilane(HFTCS)on titanium alloy(TC4)surfaces decorated with micropillars pattern,thus,composite functional surfaces with PUA coating in the valleys around the micropillars pattern of TC4 were achieved.Apparent contact angle on fabricated surfaces could reach 167°.Influences of the geometric parameters of micropillars pattern on the apparent contact angle were investigated,and the corresponding wear-resistant property was compared.Droplet impact and anti-frosting performances on the prepared surfaces were highlighted.An optimized design of surface texture with robust superhydrophobicity,controllable droplet impact,and anti-frosting performances was proposed.This design principle is of promising prospects for fabricating superhydrophobic surfaces in traditional mechanical systems.展开更多
The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has rece...The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale.展开更多
The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as...The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as characterization parameters.The Ca/Si ratio and main element contents of C-S-H gels with different WGP content were investigated by energy dispersive spectrometry(EDS).The pore structure evolution characteristics of WGP composite cementing materials were investigated by low field nuclear magnetic resonance(NMR).UsingΔfc as the index of frost resistance degradation and Weibull function,the frost resistance degradation of glass doped pervious concrete(WGP-PC)was modeled.The results show that,with WGP,for the same number of cycles,Δm andΔfc decrease and increase with the increase of WGP.Under the same WGP content,Δm andΔfc decrease first and then increase with the increase of W/C.After 100 freeze-thaw cycles,the samples with WGP content of 20%and W/C of 0.26 have the best freeze-resistance.Microscopic tests show that with the increase of WGP content,the Ca/Si ratio of C-S-H gel decreases at first and then increases with the increase of WGP content.The extreme value of Ca/Si is 2.36 when WGP is added by 20%.The pore volume of hardened paste with 20%WGP content decreased by 18.6%compared with that of cement system without WGP.The overall compactness of the specimen was improved.On the basis of the test data,a life prediction model was established according to Weibull function.The experiment showed thatΔfc could be used as a durability degradation index,and the slope of the reliability curve became gentle after WGP was added,which reduced the damage degradation rate of PC.W/C was 0.26.It's about 5000 hours.展开更多
This paper aims to determine the optimal fines content of coarse-grained soil required to simultaneously achieve weaker frost susceptibility and better bearing capacity. We studied the frost susceptibility and strengt...This paper aims to determine the optimal fines content of coarse-grained soil required to simultaneously achieve weaker frost susceptibility and better bearing capacity. We studied the frost susceptibility and strength properties of coarse-grained soil by means of frost heaving tests and static triaxial tests, and the results are as follows: (1) the freezing temperature of coarse-grained soil decreased gradually and then leveled off with incremental increases in the percent content of fines; (2) the fines content proved to be an important factor influencing the frost heave susceptibility and strength properties of coarse-grained soil. With incremental increases in the percent content of fines, the frost heave ratio increased gradually and the cohesion function of fines effectively enhanced the shear strength of coarse-grained soil before freeze-thaw, but the frost susceptibility of fines weakened the shear strength of coarse-grained soil after freeze-thaw; (3) with increasing numbers of freeze-thaw cycles, the shear strength of coarse-grained soil decreased and then stabilized after the ninth freeze-thaw cycle, and therefore the mechanical indexes of the ninth freeze-thaw cycle are recommended for the engi- neering design values; and (4) considering frost susceptibility and strength properties as a whole, the optimal fines content of 5% is recommended for railway sub,fade coarse-~rained soil fillings in frozen re^ions.展开更多
In areas with seasonal freezing,when the tunnel lining concrete is saturated with water infiltrating the interior,the lining and the surrounding rocks will simultaneously freeze.However,the current calculation of the ...In areas with seasonal freezing,when the tunnel lining concrete is saturated with water infiltrating the interior,the lining and the surrounding rocks will simultaneously freeze.However,the current calculation of the frost heaving force fails to consider the synchronous damage to the lining and surrounding rocks under freeze-thaw cycles.Therefore,as per the elastic calculation model of the frost heaving force and model of steady-state heat transfer of circular tunnels,this study introduces the frost heaving rate of lining and surrounding rocks.First,the analytical solution of frost heaving force is obtained for simultaneous frost heaving of lining and surrounding rocks under any steady-state temperature field.Then,based on the fracture theory and meso-damage mechanics,the damage variables of lining and surrounding rocks under freeze-thaw cycles are extracted,representing their elastic modulus and porosity.Finally,the formula of frost heaving force for synchronous damage to the lining and surrounding rocks at any steady-state temperature field is obtained.The calculation results demonstrate that the lower the temperature inside the lining,the greater the frost heaving force.With the increasing number of freeze-thaw cycles,frost heaving force tends to gradually increase initially,reaching a peak value at 85 freeze-thaw cycles,decreasing to 80%of the peak value at 140 cycles before reaching a constant value.The lining participates in frost heaving,increasing the frost heaving force.The initial increase rate of frost heaving force is 15.7%.Changing the fitting coefficients s1 and s2 of the lining and surrounding rocks can effectively control the magnitude of the frost heaving force in the tunnels.展开更多
Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work in...Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.展开更多
Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the c...Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the characterization of the frozen ground is very important in the Upper Indus Basin(UIB),an important and critical region with respect to climate and hydro-glaciological dynamics.In this study,the efficiency and reliability of the surface frost number model are assessed in delineating the spatial extent of different classes of frozen ground in the region.The daily MODIS land surface temperature(LST)with ground surface temperature(GST)and surface geomorphological expressions as ground validation datasets are used jointly in efficiently determining the extent of different classes of frozen ground(continuous and discontinuous permafrost and seasonal frost).The LST and GST resonate with each other in the annual cycle of temperature variation,however,with mean annual LST exhibiting an offset(cold bias)of 5 to 7℃relative to mean GST.This study shows that the highest permafrost extent is observed in areas where the lowest thinning rates of glacier ice are reported and vice versa.The surface frost number model categorizes an area of 38%±3%and 15%±3%in the UIB as permafrost and seasonal frost,respectively.Based on the altitude model,the lower limit of alpine permafrost is approximated at a mean altitude of 4919±590 m a.s.l.in the UIB.The present study acts as preliminary work in the data sparse and inaccessible regions of the UIB in characterizing the frozen and unfrozen ground and may act as a promising input data source in glaciohydro-meteorological models for the Himalaya and Karakoram.In addition,the study also underlines the consideration of this derelict cryospheric climatic variable in defining and accounting for the sustainable development of socio-economic systems through its intricate ramification on agricultural activity,landscape stability and infrastructure.展开更多
Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the me...Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.展开更多
The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmo...The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5.展开更多
In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heav...In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heaving forces,holds considerable importance in the prevention of frost damage.This research developed a two-dimensional unsteady temperature field of circular tunnels by using the difference method(taking the off-wall laying method as an example)based on the law of conservation of energy.Then,the frozen circle and water migration coefficient were introduced to establish the relationship between the temperature field and frost heaving forces,and a reliable methodology for calculating these forces under the specific conditions of TIL installation was developed.Then(i)the influence of the air layer thickness of the off-wall laying method,(ii)different laying methods of TIL,(iii)the TIL thickness,(iv)the thermal conductivity of the TIL,and(v)the freeze-thaw cycles on the frost heaving force were investigated.The results showed that the frost heaving force served as a reliable and effective metric for evaluating the insulation effect in tunnels.In order to avoid frost damage in compliance with the design requirements,the insulation effects from various laying methods were established,in descending efficacy order as follows:off-wall laying,double layer laying,surface laying,and sandwich laying.Our findings revealed that the optimal thickness for the air layer in the offwall laying method was 0.10 m.The insulation effect of materials with a thermal conductivity below 0.047 W/(m·℃)was furthermore found to be good.Under freeze-thaw cycle conditions,it is concluded that to prevent frost damage,the TIL thickness should be the sum of the thickness r1 of the first freeze-thaw cycle without frost heaving forces and an additional reserve value 0.06r1 of the TIL thickness.展开更多
基金officially supported by the National Natural Science Foundation of China(Grant Nos.42276225,51879125)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2208)。
文摘Cryogenic valves play a crucial role in the production and transportation of liquefied natural gas(LNG),and are primarily responsible for efficiently controlling the inflow and outflow of LNG and regulating pressure.However,due to their operation in low-temperature and high-humidity environments,crucial components such as drip trays are susceptible to frosting,which may lead to LNG leakage,thereby causing severe safety incidents.In this study,the user-defined function(UDF)is employed to redevelop Fluent,which integrates the frost growth model with the Eulerian multiphase flow model,to conduct a quantitative analysis of frosting on drip trays of cryogenic valves.The effects of environmental parameters,such as wind speed,ambient temperature,air humidity,and cold surface temperature on the growth of the frost layer were analyzed.This study reveals a limiting wind speed between 1 m/s and 2 m/s.Upon reaching this limit speed,the growth of the frost layer reaches its maximum,and further increases in the wind speed have no significant effect on the growth of the frost layer.Furthermore,the influence of the change in the flow field on droplet impingement and freezing during the growth of the frost layer is considered through the coupling method of the kinematic characteristics of water droplets and the collection coefficient of water droplets.This study identifies the influence of different parameters on the droplet impact efficiency,leading to the modification of the frost layer on the drip tray.
基金The financial supports from the National Natural Science Foundation of China (No. 50476011)the Natural Science Foundation of Heilongjiang Province (No. D2005-13) are gratefully acknowledged.
文摘New super-hydrophobic nanocomposite coatings were formed from modified nano-sized CaCO3 particles and polyacrylate at weight ratio of 9/1-8/2. SEM and XPS analysis indicated that such hydrophobicity could be attributed to the surface nano-microstructure and the surface enrichment of fluorine atoms. As the surface hydrophobicity increased, longer time was required for formation the initial frost, which makes super-hydrophobic coatings suitable for anti-frosting purpose.
基金support provided by the National Natural Science Foundation of China(No.51805252)the Tribology Science Fund of State Key Laboratory of Tribology(No.SKLTKF21B02)the Alexander von Humboldt Foundation.
文摘Robust superhydrophobic surfaces with excellent capacities of repelling water and anti-frosting are of importance for many mechanical components.In this work,wear-resistant superhydrophobic surfaces were fabricated by curing a mixture of polyurethane acrylate(PUA)coating and 1H,1H,2H,2H-Perfluorodecyltrichlorosilane(HFTCS)on titanium alloy(TC4)surfaces decorated with micropillars pattern,thus,composite functional surfaces with PUA coating in the valleys around the micropillars pattern of TC4 were achieved.Apparent contact angle on fabricated surfaces could reach 167°.Influences of the geometric parameters of micropillars pattern on the apparent contact angle were investigated,and the corresponding wear-resistant property was compared.Droplet impact and anti-frosting performances on the prepared surfaces were highlighted.An optimized design of surface texture with robust superhydrophobicity,controllable droplet impact,and anti-frosting performances was proposed.This design principle is of promising prospects for fabricating superhydrophobic surfaces in traditional mechanical systems.
基金This research was supported by the National Natural Science Foundation of China(52108370)Jiangxi Provincial Natural Science Foundation(No.20212BAB214062,20224BAB204061).
文摘The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale.
基金Funded by the National Natural Science Foundation of China(No.52468037)the Foster Foundation of ISMI,Gansu Province(No.GII2022-P03)the Gansu Provincial Department of Education(No.2024QB-028)。
文摘The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as characterization parameters.The Ca/Si ratio and main element contents of C-S-H gels with different WGP content were investigated by energy dispersive spectrometry(EDS).The pore structure evolution characteristics of WGP composite cementing materials were investigated by low field nuclear magnetic resonance(NMR).UsingΔfc as the index of frost resistance degradation and Weibull function,the frost resistance degradation of glass doped pervious concrete(WGP-PC)was modeled.The results show that,with WGP,for the same number of cycles,Δm andΔfc decrease and increase with the increase of WGP.Under the same WGP content,Δm andΔfc decrease first and then increase with the increase of W/C.After 100 freeze-thaw cycles,the samples with WGP content of 20%and W/C of 0.26 have the best freeze-resistance.Microscopic tests show that with the increase of WGP content,the Ca/Si ratio of C-S-H gel decreases at first and then increases with the increase of WGP content.The extreme value of Ca/Si is 2.36 when WGP is added by 20%.The pore volume of hardened paste with 20%WGP content decreased by 18.6%compared with that of cement system without WGP.The overall compactness of the specimen was improved.On the basis of the test data,a life prediction model was established according to Weibull function.The experiment showed thatΔfc could be used as a durability degradation index,and the slope of the reliability curve became gentle after WGP was added,which reduced the damage degradation rate of PC.W/C was 0.26.It's about 5000 hours.
基金supported by the National Key Technology Support Program of China (No.2012BAG05B00)the National Natural Science Foundation of China (Nos. 51208320 and 51178281)the Key Subject of China Railway Corporation (Nos. 2014G003-F and 2014G003-A)
文摘This paper aims to determine the optimal fines content of coarse-grained soil required to simultaneously achieve weaker frost susceptibility and better bearing capacity. We studied the frost susceptibility and strength properties of coarse-grained soil by means of frost heaving tests and static triaxial tests, and the results are as follows: (1) the freezing temperature of coarse-grained soil decreased gradually and then leveled off with incremental increases in the percent content of fines; (2) the fines content proved to be an important factor influencing the frost heave susceptibility and strength properties of coarse-grained soil. With incremental increases in the percent content of fines, the frost heave ratio increased gradually and the cohesion function of fines effectively enhanced the shear strength of coarse-grained soil before freeze-thaw, but the frost susceptibility of fines weakened the shear strength of coarse-grained soil after freeze-thaw; (3) with increasing numbers of freeze-thaw cycles, the shear strength of coarse-grained soil decreased and then stabilized after the ninth freeze-thaw cycle, and therefore the mechanical indexes of the ninth freeze-thaw cycle are recommended for the engi- neering design values; and (4) considering frost susceptibility and strength properties as a whole, the optimal fines content of 5% is recommended for railway sub,fade coarse-~rained soil fillings in frozen re^ions.
基金the support of the National Natural Science Foundation of China(Grant Nos.42207199,52179113,42272333)Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)。
文摘In areas with seasonal freezing,when the tunnel lining concrete is saturated with water infiltrating the interior,the lining and the surrounding rocks will simultaneously freeze.However,the current calculation of the frost heaving force fails to consider the synchronous damage to the lining and surrounding rocks under freeze-thaw cycles.Therefore,as per the elastic calculation model of the frost heaving force and model of steady-state heat transfer of circular tunnels,this study introduces the frost heaving rate of lining and surrounding rocks.First,the analytical solution of frost heaving force is obtained for simultaneous frost heaving of lining and surrounding rocks under any steady-state temperature field.Then,based on the fracture theory and meso-damage mechanics,the damage variables of lining and surrounding rocks under freeze-thaw cycles are extracted,representing their elastic modulus and porosity.Finally,the formula of frost heaving force for synchronous damage to the lining and surrounding rocks at any steady-state temperature field is obtained.The calculation results demonstrate that the lower the temperature inside the lining,the greater the frost heaving force.With the increasing number of freeze-thaw cycles,frost heaving force tends to gradually increase initially,reaching a peak value at 85 freeze-thaw cycles,decreasing to 80%of the peak value at 140 cycles before reaching a constant value.The lining participates in frost heaving,increasing the frost heaving force.The initial increase rate of frost heaving force is 15.7%.Changing the fitting coefficients s1 and s2 of the lining and surrounding rocks can effectively control the magnitude of the frost heaving force in the tunnels.
基金supported by the National Natural Science Foundation of China(No.51808128)the Natural Science Foundation of Fujian Province(No.2022J01091)。
文摘Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.
基金the National Mission on Himalayan Studies(NMHS),Ministry of Environment,Forest and Climate Change(MoEFCC)for the financial support under the research project number(GBPNI/NMHS-2019-20/MG)。
文摘Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the characterization of the frozen ground is very important in the Upper Indus Basin(UIB),an important and critical region with respect to climate and hydro-glaciological dynamics.In this study,the efficiency and reliability of the surface frost number model are assessed in delineating the spatial extent of different classes of frozen ground in the region.The daily MODIS land surface temperature(LST)with ground surface temperature(GST)and surface geomorphological expressions as ground validation datasets are used jointly in efficiently determining the extent of different classes of frozen ground(continuous and discontinuous permafrost and seasonal frost).The LST and GST resonate with each other in the annual cycle of temperature variation,however,with mean annual LST exhibiting an offset(cold bias)of 5 to 7℃relative to mean GST.This study shows that the highest permafrost extent is observed in areas where the lowest thinning rates of glacier ice are reported and vice versa.The surface frost number model categorizes an area of 38%±3%and 15%±3%in the UIB as permafrost and seasonal frost,respectively.Based on the altitude model,the lower limit of alpine permafrost is approximated at a mean altitude of 4919±590 m a.s.l.in the UIB.The present study acts as preliminary work in the data sparse and inaccessible regions of the UIB in characterizing the frozen and unfrozen ground and may act as a promising input data source in glaciohydro-meteorological models for the Himalaya and Karakoram.In addition,the study also underlines the consideration of this derelict cryospheric climatic variable in defining and accounting for the sustainable development of socio-economic systems through its intricate ramification on agricultural activity,landscape stability and infrastructure.
基金supported by the National Natural Science Foundation of China (41731281,42071078)the National Key Basic Research Program of China (No.2012CB026104)Science and Technology Project of Qinghai,China (2021-GX-121).
文摘Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.
基金funded by National Natural Science Foundation of China(Grant No.51978039)the Fundamental Research Funds for the Central Universities(Grant No.2021YJS115)。
文摘The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5.
基金the financial support provided by the National Natural Science Foundation of China(Nos.52078061,51878074)the Huaihua University Scientific Research Project,China(No.HHUY 2022-26)+1 种基金the Postgraduate Research and Innovation-funded Project of Hunan Province,China(No.CX20220885)。
文摘In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heaving forces,holds considerable importance in the prevention of frost damage.This research developed a two-dimensional unsteady temperature field of circular tunnels by using the difference method(taking the off-wall laying method as an example)based on the law of conservation of energy.Then,the frozen circle and water migration coefficient were introduced to establish the relationship between the temperature field and frost heaving forces,and a reliable methodology for calculating these forces under the specific conditions of TIL installation was developed.Then(i)the influence of the air layer thickness of the off-wall laying method,(ii)different laying methods of TIL,(iii)the TIL thickness,(iv)the thermal conductivity of the TIL,and(v)the freeze-thaw cycles on the frost heaving force were investigated.The results showed that the frost heaving force served as a reliable and effective metric for evaluating the insulation effect in tunnels.In order to avoid frost damage in compliance with the design requirements,the insulation effects from various laying methods were established,in descending efficacy order as follows:off-wall laying,double layer laying,surface laying,and sandwich laying.Our findings revealed that the optimal thickness for the air layer in the offwall laying method was 0.10 m.The insulation effect of materials with a thermal conductivity below 0.047 W/(m·℃)was furthermore found to be good.Under freeze-thaw cycle conditions,it is concluded that to prevent frost damage,the TIL thickness should be the sum of the thickness r1 of the first freeze-thaw cycle without frost heaving forces and an additional reserve value 0.06r1 of the TIL thickness.