Objective: To study the effect of fructose 1,6-diphosphate(FDP) on myocardial ischemia reperfusion injury in rats and its molecular mechanism.Methods: Male SPF SD rats were selected as experimental animals and randoml...Objective: To study the effect of fructose 1,6-diphosphate(FDP) on myocardial ischemia reperfusion injury in rats and its molecular mechanism.Methods: Male SPF SD rats were selected as experimental animals and randomly divided into four groups.Sham group received sham operation, I/R group were made into myocardial ischemia reperfusion injury models, FDP group were made into myocardial ischemia reperfusion injury models and then were given FDP intervention, and FDP+AG490 group were made into myocardial ischemia reperfusion injury models and then were given FDP and JAK2 inhibitor AG490 intervention.Results: CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of I/R group were significantly higher than those of Sham group whereas Bcl-2, p-JAK2 and p-STAT3 protein expression in myocardial tissues were significantly lower than those of Sham group; CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of FDP group were significantly lower than those of I/R group whereas Bcl-2, p-JAK2 and p-STAT3 protein expression in myocardial tissue were significantly higher than those of I/R group; CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of FDP+AG490 group were significantly higher than those of FDP group whereas Bcl-2 protein expression in myocardial tissue was significantly lower than that of FDP group.Conclusion: FDP could reduce the myocardial ischemia reperfusion injury in rats by activating the JAK2/STAT3 pathway.展开更多
Fructose-1,6-diphosphate is a metabolic intermediate that promotes cell metabolism. We hypothesize that fructose-1,6-diphosphate can protect against neuronal damage induced by febrile convulsions. Hot-water bathing wa...Fructose-1,6-diphosphate is a metabolic intermediate that promotes cell metabolism. We hypothesize that fructose-1,6-diphosphate can protect against neuronal damage induced by febrile convulsions. Hot-water bathing was used to establish a repetitive febrile convulsion model in rats aged 21 days, equivalent to 3–5 years in humans. Ninety minutes before each seizure induction, rats received an intraperitoneal injection of low- or high-dose fructose-1,6-diphosphate(500 or 1,000 mg/kg, respectively). Low- and high-dose fructose-1,6-diphosphate prolonged the latency and shortened the duration of seizures. Furthermore, high-dose fructose-1,6-diphosphate effectively reduced seizure severity. Transmission electron microscopy revealed that 24 hours after the last seizure, high-dose fructose-1,6-diphosphate reduced mitochondrial swelling, rough endoplasmic reticulum degranulation, Golgi dilation and synaptic cleft size, and increased synaptic active zone length, postsynaptic density thickness, and synaptic interface curvature in the hippocampal CA1 area. The present findings suggest that fructose-1,6-diphosphate is a neuroprotectant against hippocampal neuron and synapse damage induced by repeated febrile convulsion in immature rats.展开更多
In this study we tried to investigate the effect of fructose-1,6-diphosphate and HTK solution on protecting primary cardiac muscle cells of rat with cold preservation. The primary cardiac muscle cells of rat were cult...In this study we tried to investigate the effect of fructose-1,6-diphosphate and HTK solution on protecting primary cardiac muscle cells of rat with cold preservation. The primary cardiac muscle cells of rat were cultured in vitro with four preservation solutions respectively: 0.9 % sodium chloride solution (group A), FDP (group B), HTK solution (group C) and a mixture of FDP and HTK solution (group D). The cells were preserved for 6, 8 and 10 h at 0-4 ℃. The values of AST and LDH-L and the Na+-K+ ATPase activity in cardiac muscle cells were detected, and the survival rate of cardiac muscle cells was detected with trypan blue staining. The values of AST and LDH-L in group C and group D were remarkable lower those in group A and group B (P<0.001), while the Na+-K+ ATPase activity and the survival rate of cells in group C and group D were much higher than those in group A and group B (P<0.001). The values of AST and LDH-L after 6 hours in group D decreased much more than those in group C (P<0.01), while the Na+-K+ ATPase activity and the survival rate of cells in group D improved more than those in group C (P<0.01). Both of the HTK solution and the mixture of HTK and FDP solution have an evident effect on protecting the primary cardiac muscle cells of rat in vitro with cold preservation, Compared with the HTK solution, the mixture solution has a better short-term protective effect.展开更多
基金supported by Fenghua Science and Technology Bureau(No.B02162715)
文摘Objective: To study the effect of fructose 1,6-diphosphate(FDP) on myocardial ischemia reperfusion injury in rats and its molecular mechanism.Methods: Male SPF SD rats were selected as experimental animals and randomly divided into four groups.Sham group received sham operation, I/R group were made into myocardial ischemia reperfusion injury models, FDP group were made into myocardial ischemia reperfusion injury models and then were given FDP intervention, and FDP+AG490 group were made into myocardial ischemia reperfusion injury models and then were given FDP and JAK2 inhibitor AG490 intervention.Results: CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of I/R group were significantly higher than those of Sham group whereas Bcl-2, p-JAK2 and p-STAT3 protein expression in myocardial tissues were significantly lower than those of Sham group; CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of FDP group were significantly lower than those of I/R group whereas Bcl-2, p-JAK2 and p-STAT3 protein expression in myocardial tissue were significantly higher than those of I/R group; CK, CK-MB, c Tn I and LDH contents in serum as well as Bax and Caspase-3 protein expression in myocardial tissue of FDP+AG490 group were significantly higher than those of FDP group whereas Bcl-2 protein expression in myocardial tissue was significantly lower than that of FDP group.Conclusion: FDP could reduce the myocardial ischemia reperfusion injury in rats by activating the JAK2/STAT3 pathway.
基金financially supported by the Medical Innovations Fund of Xi’an Jiaotong University,No.GH0203214Shaanxi Provincial People’s Hospital Incubator Fund Projects+1 种基金the National Natural Science Foundation of China,No.30901600Shaanxi Provincial Scientific and Technological Research Projects,No.2006K14-G12,2005K14-G7
文摘Fructose-1,6-diphosphate is a metabolic intermediate that promotes cell metabolism. We hypothesize that fructose-1,6-diphosphate can protect against neuronal damage induced by febrile convulsions. Hot-water bathing was used to establish a repetitive febrile convulsion model in rats aged 21 days, equivalent to 3–5 years in humans. Ninety minutes before each seizure induction, rats received an intraperitoneal injection of low- or high-dose fructose-1,6-diphosphate(500 or 1,000 mg/kg, respectively). Low- and high-dose fructose-1,6-diphosphate prolonged the latency and shortened the duration of seizures. Furthermore, high-dose fructose-1,6-diphosphate effectively reduced seizure severity. Transmission electron microscopy revealed that 24 hours after the last seizure, high-dose fructose-1,6-diphosphate reduced mitochondrial swelling, rough endoplasmic reticulum degranulation, Golgi dilation and synaptic cleft size, and increased synaptic active zone length, postsynaptic density thickness, and synaptic interface curvature in the hippocampal CA1 area. The present findings suggest that fructose-1,6-diphosphate is a neuroprotectant against hippocampal neuron and synapse damage induced by repeated febrile convulsion in immature rats.
文摘In this study we tried to investigate the effect of fructose-1,6-diphosphate and HTK solution on protecting primary cardiac muscle cells of rat with cold preservation. The primary cardiac muscle cells of rat were cultured in vitro with four preservation solutions respectively: 0.9 % sodium chloride solution (group A), FDP (group B), HTK solution (group C) and a mixture of FDP and HTK solution (group D). The cells were preserved for 6, 8 and 10 h at 0-4 ℃. The values of AST and LDH-L and the Na+-K+ ATPase activity in cardiac muscle cells were detected, and the survival rate of cardiac muscle cells was detected with trypan blue staining. The values of AST and LDH-L in group C and group D were remarkable lower those in group A and group B (P<0.001), while the Na+-K+ ATPase activity and the survival rate of cells in group C and group D were much higher than those in group A and group B (P<0.001). The values of AST and LDH-L after 6 hours in group D decreased much more than those in group C (P<0.01), while the Na+-K+ ATPase activity and the survival rate of cells in group D improved more than those in group C (P<0.01). Both of the HTK solution and the mixture of HTK and FDP solution have an evident effect on protecting the primary cardiac muscle cells of rat in vitro with cold preservation, Compared with the HTK solution, the mixture solution has a better short-term protective effect.