期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Model reduction of fractional impedance spectra for time–frequency analysis of batteries, fuel cells, and supercapacitors 被引量:1
1
作者 Weiheng Li Qiu-An Huang +6 位作者 Yuxuan Bai Jia Wang Linlin Wang Yuyu Liu Yufeng Zhao Xifei Li Jiujun Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期108-141,共34页
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio... Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices. 展开更多
关键词 battery fuel cell supercapacitor fractional impedance spectroscopy model reduction time-frequency analysis
下载PDF
Materials Research Advances towards High-Capacity Battery/Fuel Cell Devices(Invited paper)
2
作者 wei-dong he lu-han ye +4 位作者 ke-chun wen ya-chun liang wei-qiang lv gao-long zhu kelvin h.l.zhang 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第1期12-20,共9页
The world has entered an era featured with fast transportations,instant communications,and prompt technological revolutions,the further advancement of which all relies fundamentally,yet,on the development of cost-effe... The world has entered an era featured with fast transportations,instant communications,and prompt technological revolutions,the further advancement of which all relies fundamentally,yet,on the development of cost-effective energy resources allowing for durable and high-rate energy supply.Current battery and fuel cell systems are challenged by a few issues characterized either by insufficient energy capacity or by operation instability and,thus,are not ideal for such highly-demanded applications as electrical vehicles and portable electronic devices.In this mini-review,we present,from materials perspectives,a few selected important breakthroughs in energy resources employed in these applications.Prospectives are then given to look towards future research activities for seeking viable materials solutions for addressing the capacity,durability,and cost shortcomings associated with current battery/fuel cell devices. 展开更多
关键词 Batteries energy materials fuel cell lithium-air lithium ion batteries
下载PDF
A novel scrape-applied method for the manufacture of the membrane-electrode assembly of the fuel-cell system
3
作者 S. D. Wu C. P. Chou +2 位作者 R. G. Peng C. H. Lee Y. Z. Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期831-837,共7页
This study investigates the transfer of the scrape-applied method from the electrodes of a lithium battery to the membrane-electrode assembly of fuel cells, including Proton Exchange Membrane Fuel Cells and Direct Met... This study investigates the transfer of the scrape-applied method from the electrodes of a lithium battery to the membrane-electrode assembly of fuel cells, including Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cell. Three methods are commonly used to manufacture lithium battery electrodes: the roller-applied method, the spraying-applied method, and the scrape-applied method. This study develops novel scrape-applied equip- ment for lithium battery electrodes. This method is novel and suitable for producing fuel cell, better than other tradi- tional methods. In this study, the stability of coating process was tested by measuring the weight and thickness of a dry electrode. The stability and reproducibility of electrode fab- rication were examined by systematic data analysis. Finally, the study used a specially designed single cell composed of 16 conductive segments, which are insulated locally. The current passing through each segment was measured using Hall Effect sensors connected to the segment compartments. Based on the measured distribution of the local current in a segmented single cell, the influence of flooding and stoi- chiometry variation of feed gas was discussed in terms of electrochemical reaction rate. The experimental results serve as an important basis for future research in this field, which hold potential benefits to the academia and the industry. 展开更多
关键词 fuel cells . Scraper . Electrode. Lithium battery - Reliability
下载PDF
Process engineering in electrochemical energy devices innovation 被引量:5
4
作者 Yingying Xie Weimin Zhang +2 位作者 Shuang Gu Yushan Yan Zi-Feng Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期39-47,共9页
This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch fr... This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch from proton exchange membranes(PEMs) to hydroxide exchange membranes(HEMs) may lead to a new-generation of affordable electrochemical energy devices including fuel cells, electrolyzers, and solar hydrogen generators. For lithium-ion batteries, a series of advancements in design and chemistry are required for electric vehicle and energy storage applications. Manufacturing process development and optimization of the LiF eP O_4/C cathode materials and several emerging novel anode materials are also discussed using the authors' work as examples.Design and manufacturing process of lithium-ion battery electrodes are introduced in detail, and modeling and optimization of large-scale lithium-ion batteries are also presented. Electrochemical energy materials and device innovations can be further prompted by better understanding of the fundamental transport phenomena involved in unit operations. 展开更多
关键词 Electrochemical energy engineering fuel cells Lithium-ion batteries Process innovation
下载PDF
Intelligent Vehicle Electrical Power Supply System with Central Coordinated Protection 被引量:2
5
作者 YANG Diange KONG Weiwei +1 位作者 LI Bing LIAN Xiaomin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期781-791,共11页
The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles... The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices(EEDs) applied in vehicles are usually directly connected with the vehicle's battery.With increasing numbers of EEDs being applied in traditional fuel vehicles,vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively.In this paper,a new vehicle electrical power supply system for traditional fuel vehicles,which accounts for all electrical/electronic devices and complex work conditions,is proposed based on a smart electrical/electronic device(SEED) system.Working as an independent intelligent electrical power supply network,the proposed system is isolated from the electrical control module and communication network,and access to the vehicle system is made through a bus interface.This results in a clean controller power supply with no electromagnetic interference.A new practical battery state of charge(So C) estimation method is also proposed to achieve more accurate So C estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel.Optimized protection methods are also used to ensure power supply safety.Experiments and tests on a traditional fuel vehicle are performed,and the results reveal that the battery So C is calculated quickly and sufficiently accurately for battery over-discharge protection.Over-current protection is achieved,and the entire vehicle's power utilization is optimized.For traditional fuel vehicles,the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture,enhancing system reliability and security. 展开更多
关键词 vehicle electrical power supply battery management vehicle electrical system traditional fuel vehicle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部