Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport cha...Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.展开更多
Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electro...Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.展开更多
The CO2-induced capillary blocking in anode flow field is one of the key adverse factors to reduce the performance of a micro-direct methanol fuel cell(l DMFC). In order to solve this problem, new polycarbonate(PC) fl...The CO2-induced capillary blocking in anode flow field is one of the key adverse factors to reduce the performance of a micro-direct methanol fuel cell(l DMFC). In order to solve this problem, new polycarbonate(PC) flow field plates with nested arrangement of hydrophilic fuel channels and superhydrophobic gas channels were designed,fabricated, and tested in this work. The gas channels were treated with solvent-induced crystallization using acetone solution. The superhydrophobicity with 160° water contact angle and 2° tilting angle was obtained on the PC substrates. A dummy cell using hydrogen peroxide decomposition reaction and a test loop were separately set up to evaluate the flow fields' performance. It was found that a 37 % pressure drop decrease can be obtained in the new serpentine flow field compared with that of the conventional one. The benefit of the new flow field to remove gas bubbles was also confirmed by an in situ visualization study on the dummy cell. Results show that the auxiliary superhydrophobic gas channels can speed up the discharge of the gas bubbles from the flow field, which will in turn improve the l DMFC performance.展开更多
Air flow control is one of the most important control methods for maintaining the stability and reliability of a fuel cell system, which can avoid oxygen starvation or oxygen saturation. The oxygen excess ratio (OER...Air flow control is one of the most important control methods for maintaining the stability and reliability of a fuel cell system, which can avoid oxygen starvation or oxygen saturation. The oxygen excess ratio (OER) is often used to indicate the air flow condition. Based on a fuel cell system model for vehicles, OER performance was analyzed for different stack currents and temperatures in this paper, and the results show that the optimal OER was affected weakly by the stack temperature. In order to ensure the system working in optimal OER, a control scheme that includes an optimal OER regulator and a fuzzy control was proposed. According to the stack current, a reference value of air flow rate was obtained with the optimal OER regulator and then the air compressor motor voltage was controlled with the fuzzy controller to adjust the air flow rate provided by the air compressor. Simulation results show that the control method has good dynamic and static characteristics.展开更多
The performance of fuel cells and the vehicle applications they are embedded into depends on a delicate balance of the correct temperature, humidity, reactant pressure, purity and flow rate. This paper successfully in...The performance of fuel cells and the vehicle applications they are embedded into depends on a delicate balance of the correct temperature, humidity, reactant pressure, purity and flow rate. This paper successfully investigates the problem related to flow control with implementation on a single cell membrane electrode assembly (MEA). This paper presents a systematic approach for performing system identification using recursive least squares identification to account for the non-linear parameters of the fuel cell. Then, it presents a fuzzy controller with a simplified rule base validated against real time results with the existing flow controller which calculates the flow required from the stoichiometry value.展开更多
The present work is a visualization study of a typical kerosene (RP-3) flowing through vertical and horizontal quartz-glass tubes under both sub- and supercritical conditions by a high speed camera. The experiments ...The present work is a visualization study of a typical kerosene (RP-3) flowing through vertical and horizontal quartz-glass tubes under both sub- and supercritical conditions by a high speed camera. The experiments are accomplished at temperatures of 300-730 K under pressures from 0.107-5 MPa. Six distinctive two-phase flow patterns are observed in upward flow and the critical point of RP-3 is identified as critical pressure pc=2.33 MPa and critical temperature Tc=645.04 K and it is found that when the fluid pressure exceeds 2.33 MPa the flow can be considered as a single phase flow. The critical opalescence phenomenon of RP-3 is observed when the temperature is between 643.16 K and 648.61 K and the pressure is between 2.308 MPa and 2.366 MPa. The region filled by the critical opalescence in the upward flow is clearly larger than that in the downward flow due to the interaction between the buoyancy force and fluid inertia. Morecover, obvious layered flow phenomenon is observed in horizontal flow under supercritical pressures due to the differences of gravity and density.展开更多
Complex energy and environment system, especially nuclear fuel cycle system recently raised socialconcerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only underthe co...Complex energy and environment system, especially nuclear fuel cycle system recently raised socialconcerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only underthe condition that those conflicting issues are gotten a consensus between stakeholders with different knowledgebackground, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has beendeveloped to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle systembased on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theoryof human being. Its character is that MFM models define a set of mass, energy and information flow structures onmultiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representationand the means-end and part-whole hierarchical flow structure to make the represented process easy to beunderstood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system wereselected to be simulated and some analysis processes such as economics analysis, environmental analysis and energybalance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finallythe simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycleand its levelised cost analysis will be represented as feasible examples.展开更多
Complex Nuclear Fuel Cycle (NFC) system faces many socio-technical issues that need to obtain the consensus between stakeholders of different knowledge background. In this paper, a visualized analysis platform based o...Complex Nuclear Fuel Cycle (NFC) system faces many socio-technical issues that need to obtain the consensus between stakeholders of different knowledge background. In this paper, a visualized analysis platform based on graphical functional modeling method, Multilevel Flow Model (MFM), is proposed to help those stakeholders to recognize and analyze various socio-technical issues in NFC system. Some new functions, such as “Reaction Function", “Switch Function" and “Conversion Function", are introduced to fulfill new simulation tasks for NFC system. Based upon this methodology, a micro-process and a macro-process of NFC system are simulated and meanwhile some key analysis variables, such as CO2 emission and cost flow, required by some analysis methods are deducted and displayed in the platform. And finally a sample simulation analysis is conducted based on MFM.展开更多
A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm 2 and channel depth of about 500 μ m.A theoretica...A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm 2 and channel depth of about 500 μ m.A theoretical analysis is performed in this study for a novel MEMS-based design of a micro PEMFC.The model consists of the conservation equations of mass,momentum,species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code.The polarization curves of simulation are well correlated with experimental data.Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature,current density and water distributions in two different fuel flow rates (15 cm 3 /min and 40 cm 3 /min).Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4 V operating voltage.Model predictions are well within those known for experimental mechanism phenomena.展开更多
Two-fluid model and divisional computation techniques were used. The multispecies gas fully N-S equations were solved by upwind TVD scheme. Liquid phase equations were solved by NND scheme. The phases-interaction ODE ...Two-fluid model and divisional computation techniques were used. The multispecies gas fully N-S equations were solved by upwind TVD scheme. Liquid phase equations were solved by NND scheme. The phases-interaction ODE equations were solved by 2nd Runge-Kutta approach. The favorable agreement is obtained between computational results and PLIF experimental results of iodized air injected into a supersonic flow. Then, the numerical studies,were carried out on the mixing of CH, and kerosene injected into a supersonic flow with H-2 pilot injection. The results indicate that the penetration of kerosene approaches maximum when it is injected from the second injector. But the kerosene is less diffused compared with the gas fuels. The free droplet region appears in the flow field. The mixing mechanism of CH4 with H-2 pilot injection is different from that of kerosene. In the staged duct, H-2 can be entrained into both recirculation zones produced by the step mid injectors. But CH, can only be carried into the recirculation between the injectors. Therefore, initiations of H, and CH4 carl occur in those regions. The staged duct is better in enhancing mixing and initiation with H-2 pilot flame.展开更多
This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 ...This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 to 24 fuel assemblies. A realistic analysis needs the knowledge of the actual operation conditions (heat flow, flow rates) beyond the geometric data and the uncertainties associated with manufacturing and measures. A dummy fuel assembly was designed and constructed to measure the actual flow rate through the core fuel assemblies and its pressure drop. First results showed that the flow distribution over the core is nearly uniform. Nevertheless, the values are below than the calculated ones and the core bypass flow rate is greater than those estimated previously. Based on this, several activities were performed to identify and reduce the bypass flow, such as reduction of the flow rate through the sample irradiators, closing some unnecessary secondary holes on the matrix plate, improvement in the primary flow rate system and better fit of the core components on the matrix plate. A sub-aquatic visual system was used as an important tool to detect some bypass flow path. After these modifications, the fuel assemblies flow rate increased about 13%. Additional tests using the dummy fuel assembly were carried out to measure the internal flow distribution among the rectangular channels. The results showed that the flow rate through the outer channels is 10% - 15% lower than the internal ones. The flow rate in the channel formed between two adjacent fuel assemblies is an estimated parameter and it is difficult to measure because this is an open channel. A new thermal hydraulic analysis of the outermost plates of the fuel assemblies takes into account all this information. Then, a fuel design modification was proposed with the reduction of 50% in the uranium quantity in the outermost fuel plates. In order to avoid the oxidation of the outermost plates by high temperature, low flow rate, a reduction of 50% in the uranium density in the same ones was shown to be adequate to solve the problem.展开更多
Microbial fuel cell (MFC) is a novel environmental friendly energy device which has received great attention due to its technology for producing electricity directly fi-om organic or inorganic matter by using bacter...Microbial fuel cell (MFC) is a novel environmental friendly energy device which has received great attention due to its technology for producing electricity directly fi-om organic or inorganic matter by using bacteria as catalyst. To date, many experiments have been carried out to achieve the maximum power output with advective flow through porous anode to the cathode in the MFC. However, the precise mechanical mechanism of flow through anode and the quantified relationship between electrode spacing and MFC performance are not yet clearly understood. It hasbeen found experimentally that the power output can be increased apparently at certain electrode spacing configuration. Based on these available experimental data, this paper investigates the effect of spacing between electrodes, the Darcy number of porous anode and the Reynolds number on the power production performance of MFC by using lattice Boltzmann method. The numerical simulation results present that the distance between electrodes significantly influences the flow velocity and residence time of the organic matter attached to the anode in the MFC. Moreover, it is found that the Darey number of porous anode and the Reynolds number can regulate the output efficiency of MFC. These results perform better understanding of the complex phenomena of MFC and will be helpful to optimize MFC design.展开更多
Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, i...Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.展开更多
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(22178197)。
文摘Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant 623313)
文摘Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.
基金financially supported by the National Natural Science Foundation of China (Nos. 51275076, 51475081)
文摘The CO2-induced capillary blocking in anode flow field is one of the key adverse factors to reduce the performance of a micro-direct methanol fuel cell(l DMFC). In order to solve this problem, new polycarbonate(PC) flow field plates with nested arrangement of hydrophilic fuel channels and superhydrophobic gas channels were designed,fabricated, and tested in this work. The gas channels were treated with solvent-induced crystallization using acetone solution. The superhydrophobicity with 160° water contact angle and 2° tilting angle was obtained on the PC substrates. A dummy cell using hydrogen peroxide decomposition reaction and a test loop were separately set up to evaluate the flow fields' performance. It was found that a 37 % pressure drop decrease can be obtained in the new serpentine flow field compared with that of the conventional one. The benefit of the new flow field to remove gas bubbles was also confirmed by an in situ visualization study on the dummy cell. Results show that the auxiliary superhydrophobic gas channels can speed up the discharge of the gas bubbles from the flow field, which will in turn improve the l DMFC performance.
基金supported by the National Natural Science Foundation of China (No. 51177138)the Research Fund for the Doctoral Program of High Education of China (No.20100184110015)Sichuan Province International Technology Cooperation and Exchange Program (No. 2012HH0007)
文摘Air flow control is one of the most important control methods for maintaining the stability and reliability of a fuel cell system, which can avoid oxygen starvation or oxygen saturation. The oxygen excess ratio (OER) is often used to indicate the air flow condition. Based on a fuel cell system model for vehicles, OER performance was analyzed for different stack currents and temperatures in this paper, and the results show that the optimal OER was affected weakly by the stack temperature. In order to ensure the system working in optimal OER, a control scheme that includes an optimal OER regulator and a fuzzy control was proposed. According to the stack current, a reference value of air flow rate was obtained with the optimal OER regulator and then the air compressor motor voltage was controlled with the fuzzy controller to adjust the air flow rate provided by the air compressor. Simulation results show that the control method has good dynamic and static characteristics.
文摘The performance of fuel cells and the vehicle applications they are embedded into depends on a delicate balance of the correct temperature, humidity, reactant pressure, purity and flow rate. This paper successfully investigates the problem related to flow control with implementation on a single cell membrane electrode assembly (MEA). This paper presents a systematic approach for performing system identification using recursive least squares identification to account for the non-linear parameters of the fuel cell. Then, it presents a fuzzy controller with a simplified rule base validated against real time results with the existing flow controller which calculates the flow required from the stoichiometry value.
基金National Natural Science Foundation of China(50676005)
文摘The present work is a visualization study of a typical kerosene (RP-3) flowing through vertical and horizontal quartz-glass tubes under both sub- and supercritical conditions by a high speed camera. The experiments are accomplished at temperatures of 300-730 K under pressures from 0.107-5 MPa. Six distinctive two-phase flow patterns are observed in upward flow and the critical point of RP-3 is identified as critical pressure pc=2.33 MPa and critical temperature Tc=645.04 K and it is found that when the fluid pressure exceeds 2.33 MPa the flow can be considered as a single phase flow. The critical opalescence phenomenon of RP-3 is observed when the temperature is between 643.16 K and 648.61 K and the pressure is between 2.308 MPa and 2.366 MPa. The region filled by the critical opalescence in the upward flow is clearly larger than that in the downward flow due to the interaction between the buoyancy force and fluid inertia. Morecover, obvious layered flow phenomenon is observed in horizontal flow under supercritical pressures due to the differences of gravity and density.
文摘Complex energy and environment system, especially nuclear fuel cycle system recently raised socialconcerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only underthe condition that those conflicting issues are gotten a consensus between stakeholders with different knowledgebackground, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has beendeveloped to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle systembased on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theoryof human being. Its character is that MFM models define a set of mass, energy and information flow structures onmultiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representationand the means-end and part-whole hierarchical flow structure to make the represented process easy to beunderstood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system wereselected to be simulated and some analysis processes such as economics analysis, environmental analysis and energybalance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finallythe simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycleand its levelised cost analysis will be represented as feasible examples.
文摘Complex Nuclear Fuel Cycle (NFC) system faces many socio-technical issues that need to obtain the consensus between stakeholders of different knowledge background. In this paper, a visualized analysis platform based on graphical functional modeling method, Multilevel Flow Model (MFM), is proposed to help those stakeholders to recognize and analyze various socio-technical issues in NFC system. Some new functions, such as “Reaction Function", “Switch Function" and “Conversion Function", are introduced to fulfill new simulation tasks for NFC system. Based upon this methodology, a micro-process and a macro-process of NFC system are simulated and meanwhile some key analysis variables, such as CO2 emission and cost flow, required by some analysis methods are deducted and displayed in the platform. And finally a sample simulation analysis is conducted based on MFM.
基金National Science Council for financially supporting this research under Contract No. NSC98-2221-E-009-162
文摘A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm 2 and channel depth of about 500 μ m.A theoretical analysis is performed in this study for a novel MEMS-based design of a micro PEMFC.The model consists of the conservation equations of mass,momentum,species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code.The polarization curves of simulation are well correlated with experimental data.Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature,current density and water distributions in two different fuel flow rates (15 cm 3 /min and 40 cm 3 /min).Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4 V operating voltage.Model predictions are well within those known for experimental mechanism phenomena.
文摘Two-fluid model and divisional computation techniques were used. The multispecies gas fully N-S equations were solved by upwind TVD scheme. Liquid phase equations were solved by NND scheme. The phases-interaction ODE equations were solved by 2nd Runge-Kutta approach. The favorable agreement is obtained between computational results and PLIF experimental results of iodized air injected into a supersonic flow. Then, the numerical studies,were carried out on the mixing of CH, and kerosene injected into a supersonic flow with H-2 pilot injection. The results indicate that the penetration of kerosene approaches maximum when it is injected from the second injector. But the kerosene is less diffused compared with the gas fuels. The free droplet region appears in the flow field. The mixing mechanism of CH4 with H-2 pilot injection is different from that of kerosene. In the staged duct, H-2 can be entrained into both recirculation zones produced by the step mid injectors. But CH, can only be carried into the recirculation between the injectors. Therefore, initiations of H, and CH4 carl occur in those regions. The staged duct is better in enhancing mixing and initiation with H-2 pilot flame.
文摘This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 to 24 fuel assemblies. A realistic analysis needs the knowledge of the actual operation conditions (heat flow, flow rates) beyond the geometric data and the uncertainties associated with manufacturing and measures. A dummy fuel assembly was designed and constructed to measure the actual flow rate through the core fuel assemblies and its pressure drop. First results showed that the flow distribution over the core is nearly uniform. Nevertheless, the values are below than the calculated ones and the core bypass flow rate is greater than those estimated previously. Based on this, several activities were performed to identify and reduce the bypass flow, such as reduction of the flow rate through the sample irradiators, closing some unnecessary secondary holes on the matrix plate, improvement in the primary flow rate system and better fit of the core components on the matrix plate. A sub-aquatic visual system was used as an important tool to detect some bypass flow path. After these modifications, the fuel assemblies flow rate increased about 13%. Additional tests using the dummy fuel assembly were carried out to measure the internal flow distribution among the rectangular channels. The results showed that the flow rate through the outer channels is 10% - 15% lower than the internal ones. The flow rate in the channel formed between two adjacent fuel assemblies is an estimated parameter and it is difficult to measure because this is an open channel. A new thermal hydraulic analysis of the outermost plates of the fuel assemblies takes into account all this information. Then, a fuel design modification was proposed with the reduction of 50% in the uranium quantity in the outermost fuel plates. In order to avoid the oxidation of the outermost plates by high temperature, low flow rate, a reduction of 50% in the uranium density in the same ones was shown to be adequate to solve the problem.
基金supported by the National Natural Science Foundation of China (10932010,10972208 and11072220)
文摘Microbial fuel cell (MFC) is a novel environmental friendly energy device which has received great attention due to its technology for producing electricity directly fi-om organic or inorganic matter by using bacteria as catalyst. To date, many experiments have been carried out to achieve the maximum power output with advective flow through porous anode to the cathode in the MFC. However, the precise mechanical mechanism of flow through anode and the quantified relationship between electrode spacing and MFC performance are not yet clearly understood. It hasbeen found experimentally that the power output can be increased apparently at certain electrode spacing configuration. Based on these available experimental data, this paper investigates the effect of spacing between electrodes, the Darcy number of porous anode and the Reynolds number on the power production performance of MFC by using lattice Boltzmann method. The numerical simulation results present that the distance between electrodes significantly influences the flow velocity and residence time of the organic matter attached to the anode in the MFC. Moreover, it is found that the Darey number of porous anode and the Reynolds number can regulate the output efficiency of MFC. These results perform better understanding of the complex phenomena of MFC and will be helpful to optimize MFC design.
文摘Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.