A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of ...A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.展开更多
A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and was...A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives.展开更多
由于计算电容原理在电磁计量领域具有极高的准确度,将其应用在传感器的研制上具有重要的现实意义。针对传统双层套筒的电容式液位传感器在加工及装配过程中极易引入误差、存在毛细现象等问题,首次将计算电容原理运用在燃料液位测量领域...由于计算电容原理在电磁计量领域具有极高的准确度,将其应用在传感器的研制上具有重要的现实意义。针对传统双层套筒的电容式液位传感器在加工及装配过程中极易引入误差、存在毛细现象等问题,首次将计算电容原理运用在燃料液位测量领域,对计算电容原理进行深入研究,设计新的计算电容结构并对其进行修正,同时结合新的结构建立新的燃料液位测量模型,得出相应的修正系数及液位测量公式。最后,以纯度为99.8%的无水乙醇作为被测燃料进行液位测量试验,燃料液位变化范围为180 mm,输出电容值在0.6 p F^17 p F之间,实验结果表明:燃料液位与传感器输出电容值具有良好线性关系,线性度达到0.48%。该研究为计算电容原理在工程中的应用奠定了理论基础。展开更多
文摘A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.
基金Supported by the National Natural Science Foundation of China(21576163)the Major State Basic Research Development Program of China(2014CB239703)+1 种基金the Science and Technology Commission of Shanghai Municipality(14DZ2250800)the Project-sponsored by SRF for ROCS,SEM
文摘A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives.
文摘由于计算电容原理在电磁计量领域具有极高的准确度,将其应用在传感器的研制上具有重要的现实意义。针对传统双层套筒的电容式液位传感器在加工及装配过程中极易引入误差、存在毛细现象等问题,首次将计算电容原理运用在燃料液位测量领域,对计算电容原理进行深入研究,设计新的计算电容结构并对其进行修正,同时结合新的结构建立新的燃料液位测量模型,得出相应的修正系数及液位测量公式。最后,以纯度为99.8%的无水乙醇作为被测燃料进行液位测量试验,燃料液位变化范围为180 mm,输出电容值在0.6 p F^17 p F之间,实验结果表明:燃料液位与传感器输出电容值具有良好线性关系,线性度达到0.48%。该研究为计算电容原理在工程中的应用奠定了理论基础。