期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Distributed receding horizon control for fuel-efficient and safe vehicle platooning 被引量:4
1
作者 WANG Qiong GUO Ge CAI Bin Bin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1953-1962,共10页
This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumpti... This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars. 展开更多
关键词 vehicle platoon fuel consumption string stability optimal control hierarchical control
原文传递
Elliptical formation control based on relative orbit elements 被引量:3
2
作者 Yin Jianfeng Han Chao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1554-1567,共14页
A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse... A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy.Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions.Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law.A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions.An optimal analytical along-track impulsive control strategy is then derived.Different typical orbit maneuvers,including formation establishment,reconfguration,long-distance maneuvers,and formation keeping,are taken as examples to demonstrate the performance of the proposed control laws.The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method. 展开更多
关键词 Elliptical formation control Formation flying fuel optimal Impulsive control Relative orbit elements
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部