Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thi...Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.展开更多
Nuclear fuel based on uranium metal alloys is utilized in research and test reactors. For the purpose of the reduction of fuel enrichment, high densities of uranium-235 in this kind of fuel are needed. This can be ach...Nuclear fuel based on uranium metal alloys is utilized in research and test reactors. For the purpose of the reduction of fuel enrichment, high densities of uranium-235 in this kind of fuel are needed. This can be achieved when uranium alloys are used containing elements such as Zr, Mo and Nb. The construction of fuel element with high-uranium density requires materials with low cross sections for neutron absorption, stability under irradiation and absence of the chemical interactions between the fuel and cladding elements. In case of U-Zr-Nb alloys, Zry (zircaloy) cladding is a better option due to the fact that they have a higher chemical compatibility when compared with the use of aluminum alloys. This study aims to develop plate type nuclear fuel using the U-2.5Zr-7.5Nb alloy dispersed in Zry. Powders of this uranium based alloy and Zry were obtained by hydriding-dehydriding process. These powders were homogenized, compacted in pellet that was sandwiched in plates and frame of Zry. This assembly was hot rolled forming the dispersion fuel miniplate.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21106012)the Educational Department Foundation of Liaoning Province of China(NO.L2014180)
文摘Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.
文摘Nuclear fuel based on uranium metal alloys is utilized in research and test reactors. For the purpose of the reduction of fuel enrichment, high densities of uranium-235 in this kind of fuel are needed. This can be achieved when uranium alloys are used containing elements such as Zr, Mo and Nb. The construction of fuel element with high-uranium density requires materials with low cross sections for neutron absorption, stability under irradiation and absence of the chemical interactions between the fuel and cladding elements. In case of U-Zr-Nb alloys, Zry (zircaloy) cladding is a better option due to the fact that they have a higher chemical compatibility when compared with the use of aluminum alloys. This study aims to develop plate type nuclear fuel using the U-2.5Zr-7.5Nb alloy dispersed in Zry. Powders of this uranium based alloy and Zry were obtained by hydriding-dehydriding process. These powders were homogenized, compacted in pellet that was sandwiched in plates and frame of Zry. This assembly was hot rolled forming the dispersion fuel miniplate.