The evolution of point bars in changing sections of a downstream tidal current limit is periodic. Accordingly, assessing the critical morphology and hydrodynamic characteristics of point bar scour and the sediment tra...The evolution of point bars in changing sections of a downstream tidal current limit is periodic. Accordingly, assessing the critical morphology and hydrodynamic characteristics of point bar scour and the sediment transport process of scour sediment bodies can support river regulation and waterway maintenance. The frequent scour of point bars in changing sections of tidal current limits within the Yangtze River directly restricts waterway stability. This study examined the Fujiangsha reach of the Yangtze River, hydrological data on sediment transport, and riverbed topography from 1950. The Jingjiang bank tail exhibited an evolutionary cycle(siltation>scour>siltation), with a primary period ranging from 3–6 years. Additionally, certain morphological and dynamic conditions were necessary for scour. The Datong station flow(Q) ranged from 20,000–40,000 m^(3)·s^(-1)for ≥180 days·yr^(-1), enabling the bank silt layers to widen. Scour occurred during flooding and was concentrated in areas 5.0–7.5 km downstream from Ebizui. When Q≥40,000 m^(3)·s^(-1), scouring occurred in the bank middle and lower reaches, whereas Q≥50,000 m^(3)·s^(-1)for >50 consecutive days, scour occurred at the tail as well. Moreover, the volume of the scour shoals increased with the number of high-flow days(≥60,000 m^(3)·s^(-1)). Bottom sand transport mainly occurred in the low-bank zone. Before the project’s second phase, the longitudinal transport of the scouring sand bodies occurred as follows: Jingjiang bank > low bank on the north side of Shuangjiansha > Fubei anabranch. During the second phase, the longitudinal transport route changed to Jingjiang bank > Fubei anabranch. The Jingjiang bank volume was also reduced;thus, its development was controlled. Owing to changes in the longitudinal transport routes, dredging should be conducted in areas where scouring sand bodies are separately transported from the tail, thereby reducing the load of dredging and maintenance for the Fubei anabranch during dry years.展开更多
Deep-water navigation channels in the tidal reaches of the lower Yangtze River are affected by water and sediment fluxes that produce complex shoals and unstable channel conditions.The Fujiangsha reach is particularly...Deep-water navigation channels in the tidal reaches of the lower Yangtze River are affected by water and sediment fluxes that produce complex shoals and unstable channel conditions.The Fujiangsha reach is particularly difficult to manage,as it has many braided channels within the tidal fluctuation zone.In this study,hydrologic and topographic data from the Fujiangsha reach from 2012 to 2017 were used to examine the variations in deposition and erosion,flow diversion,shoals,and channel conditions.Since the Three Gorges Dam became operational and water storage was initiated,the Fujiangsha reach has shown an overall tendency toward erosion.Channels deeper than 10 m accounted for 83.7% of the total erosion of the Fujiangsha reach during 2012-2017.Moreover,the dominant channel-forming sediments have gradually changed from suspended sediments to a mixed load of suspended and bed-load sediments.Deposition volumes of these sediments has varied significantly among different channels,but has mainly occurred in the Fubei channel.Furthermore,periodic variations in the Jingjiang point bar have followed a deposition-erosion-deposition pattern,and the downstream Shuangjian shoal mid-channel bar has been scoured and shortened.Approximately 44.0% of the bed load from the upstream Fujiangsha reach is deposited within the 12.5-m deep Fubei channel.The increased erosion and river flow from the Jingjiang point bar and the Shuangjian shoal during the flood season constituted 59.3% and 40.7%,respectively,of the total amount of siltation in the Fubei channel.展开更多
基金National Key Research and Development Program of China,No.2021YFB2600500National Natural Science Foundation of China,No.52279066Jiangsu Water Conservancy Science and Technology Project,No.2020001。
文摘The evolution of point bars in changing sections of a downstream tidal current limit is periodic. Accordingly, assessing the critical morphology and hydrodynamic characteristics of point bar scour and the sediment transport process of scour sediment bodies can support river regulation and waterway maintenance. The frequent scour of point bars in changing sections of tidal current limits within the Yangtze River directly restricts waterway stability. This study examined the Fujiangsha reach of the Yangtze River, hydrological data on sediment transport, and riverbed topography from 1950. The Jingjiang bank tail exhibited an evolutionary cycle(siltation>scour>siltation), with a primary period ranging from 3–6 years. Additionally, certain morphological and dynamic conditions were necessary for scour. The Datong station flow(Q) ranged from 20,000–40,000 m^(3)·s^(-1)for ≥180 days·yr^(-1), enabling the bank silt layers to widen. Scour occurred during flooding and was concentrated in areas 5.0–7.5 km downstream from Ebizui. When Q≥40,000 m^(3)·s^(-1), scouring occurred in the bank middle and lower reaches, whereas Q≥50,000 m^(3)·s^(-1)for >50 consecutive days, scour occurred at the tail as well. Moreover, the volume of the scour shoals increased with the number of high-flow days(≥60,000 m^(3)·s^(-1)). Bottom sand transport mainly occurred in the low-bank zone. Before the project’s second phase, the longitudinal transport of the scouring sand bodies occurred as follows: Jingjiang bank > low bank on the north side of Shuangjiansha > Fubei anabranch. During the second phase, the longitudinal transport route changed to Jingjiang bank > Fubei anabranch. The Jingjiang bank volume was also reduced;thus, its development was controlled. Owing to changes in the longitudinal transport routes, dredging should be conducted in areas where scouring sand bodies are separately transported from the tail, thereby reducing the load of dredging and maintenance for the Fubei anabranch during dry years.
基金National Natural Science Foundation of China,No.51809131,No.U2040203Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,No.2017491211Fundamental Research Funds for Central Welfare Research Institutes,No.TKS20200404,No.TKS20200312。
文摘Deep-water navigation channels in the tidal reaches of the lower Yangtze River are affected by water and sediment fluxes that produce complex shoals and unstable channel conditions.The Fujiangsha reach is particularly difficult to manage,as it has many braided channels within the tidal fluctuation zone.In this study,hydrologic and topographic data from the Fujiangsha reach from 2012 to 2017 were used to examine the variations in deposition and erosion,flow diversion,shoals,and channel conditions.Since the Three Gorges Dam became operational and water storage was initiated,the Fujiangsha reach has shown an overall tendency toward erosion.Channels deeper than 10 m accounted for 83.7% of the total erosion of the Fujiangsha reach during 2012-2017.Moreover,the dominant channel-forming sediments have gradually changed from suspended sediments to a mixed load of suspended and bed-load sediments.Deposition volumes of these sediments has varied significantly among different channels,but has mainly occurred in the Fubei channel.Furthermore,periodic variations in the Jingjiang point bar have followed a deposition-erosion-deposition pattern,and the downstream Shuangjian shoal mid-channel bar has been scoured and shortened.Approximately 44.0% of the bed load from the upstream Fujiangsha reach is deposited within the 12.5-m deep Fubei channel.The increased erosion and river flow from the Jingjiang point bar and the Shuangjian shoal during the flood season constituted 59.3% and 40.7%,respectively,of the total amount of siltation in the Fubei channel.