Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circui...Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circuit response;moreover it is convenient for controller design purpose. Due to simple and effective methodology, average state space is the most common method among the modelling methods. In this paper a bidirectional full bridge converter is modelled by average state space and for each mode of operations a controller is designed. Attained mathematical model results are in a close agreement with detailed circuit simulation.展开更多
The interests on energy storage schemes, bidirectional dc-dc converter and uninterruptible power supplies have been increasing nowadays as there wide researches are undertaken in the area of electric vehicles. A modif...The interests on energy storage schemes, bidirectional dc-dc converter and uninterruptible power supplies have been increasing nowadays as there wide researches are undertaken in the area of electric vehicles. A modified bi directional class-E resonant dc-dc converter is introduced here in this proposed topology for the application in electric vehicles. The advantages of soft switching techniques have been utilized for making analysis simple. The main advantage here in this system is that it can operate in a wide range of frequencies with minimal switching loss in transistors. This paper elaborates a detailed analysis on converter design and the same has been simulated and verified in Matlab/Simulink.展开更多
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec...In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.展开更多
To suppress peak voltage on rectifier diodes in a full bridge( FB) converter,the mechanism of peak voltage was analyzed and an improved FB converter was proposed. One reason for peak voltage is the resonance of the tr...To suppress peak voltage on rectifier diodes in a full bridge( FB) converter,the mechanism of peak voltage was analyzed and an improved FB converter was proposed. One reason for peak voltage is the resonance of the transformer's leakage inductance and the rectifier diodes' junction capacitances. The other reason is that the fast reverse recovery current of the rectifier diodes flows through the transformer's leakage inductance. An H bridge composed of four diodes,an auxiliary inductance, and a clamping winding were adopted in the proposed converter,and peak voltage was suppressed by varying the equivalent inductance, principally in different operating modes. Experimental results demonstrate that the peak voltage of rectifier diodes decreases by 43%,the auxiliary circuit does not lead to additional loss, and the rising rate, resonant frequency,and amplitude of the rectifier diodes' voltage decrease.Peak voltage and electromagnetic interference( EMI) of rectifier diodes are suppressed.展开更多
EMI Filter Design and Performance for isolated full bridge buck converter is developed in this paper. In order to design a high performance EMI filter, many issues need to be considered beforehand. Some important issu...EMI Filter Design and Performance for isolated full bridge buck converter is developed in this paper. In order to design a high performance EMI filter, many issues need to be considered beforehand. Some important issues including accurate model of converter components, parasitic elements, its effect on EMI noise and impedance mismatch are included in this paper. A numerical prediction of EMI/EMC has the potential to evaluate EMI performances at the design stage and before prototyping. It can also help reduce the post-prototype EMC cost by minimizing late redesign and modifications of a design implementation. Saber simulator is used to analyze the EMI noises and EMI filter’s performance. Conducted EMI noise measurement and EMI filter design of isolated full bridge buck converter has been achieved while successfully satisfying the FCC class B limits in the frequency range from 150 kHz to 30 MHz. Simulation results are compared with experimental data and the effectiveness of the EMI simulation approach is demonstrated.展开更多
In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on out...In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.展开更多
To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a co...To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a compensation signal whose slope varies from different duty cycles at - 40-85℃ ,and reduces the negative effect of slope compensation on the system's load capacity and transient response. A current mode PWM Boost DC-DC converter employing this slope compensation circuit is implemented in a UMC 0.6μm-BCD process. The results indicate that the circuit works well and effectively,and the load capacity is increased by 20%. The chip area of the piecewise linear slope compensation circuit is 0.01mm^2 ,which consumes only 8μA quiescent current,and the efficiency ranges up to 93%.展开更多
Based on ZVZCS (zero voltage zero current switching) full bridge converter technique, a novel inverter welding power supply is designed, in which the secondary side of the transformer adopts passive clamping circuit...Based on ZVZCS (zero voltage zero current switching) full bridge converter technique, a novel inverter welding power supply is designed, in which the secondary side of the transformer adopts passive clamping circuit to reduce voltage stress of rectifying components. This supply can realize power switches ZVS (zero voltage switching ) or ZCS (zero current switching) within a very wide range of load; Only through setting up blocking capacitor in the primary side of transformer, the power transformer's bias in the full-bridge converter is suppressed and the primary current can be reset easily. In addition, how to calculate the blocking capacitor and its influence to power supply performance are also subjects discussed in this paper.展开更多
Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can ...Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can be achieved. This paper presents a fuzzy logic control for dual active bridge series resonant converters for DC smart grid application. The DC smart grid consists of wind turbine and photovoltaic generators, controllable and DC loads, and power converters. The proposed control method has been applied to the controllable load's and the grid side's dual active bridge series resonant converters for attaining control of the power system. It has been used for management of controllable load's state of charge, DC feeder's voltage stability during the loads and power variations from wind energy and photovoltaic generation and power flow management between the grid side and the DC smart grid. The effectiveness of the proposed DC smart grid operation has been verified by simulation results obtained by using MATLAB and PLECS cards.展开更多
A current-mode DC-DC buck converter with high stability is presented. The loop gain's expression of the current-mode converter is derived by employing an advanced model of a current-mode control converter. After anal...A current-mode DC-DC buck converter with high stability is presented. The loop gain's expression of the current-mode converter is derived by employing an advanced model of a current-mode control converter. After analyzing the loop gain's expression, which illustrates the method of selecting suitable frequency compensation for the control loop,a novel pole-zero tracking frequency compensation is proposed. Based on theoretical analysis, a DC-DC buck converter with high stability is designed with 0.5μm-CMOS technology. The simulated results reveal that the stability of the converter is independent of the load current and the input voltage. Moreover,the converter provides a full load transient response setting time of less than 5μs and overshoots and undershoots of less than 30mV.展开更多
A high efficiency full-bridge converter is investigated and implemented in this paper. The measured data result from the other converter implemented by IC UCC3895 is to compare with that of the previous converter. Thi...A high efficiency full-bridge converter is investigated and implemented in this paper. The measured data result from the other converter implemented by IC UCC3895 is to compare with that of the previous converter. This full-bridge converter proposed and implemented converter can obtain about 96% power efficiency in conversion procedure when compared with that of 90%, which were ever published by the conventional techniques. Apart from, the L-C resonance circuits were developed and embedded into the popular PWM (pulse width modulation) power converter, which is referred as the soft-switching, so as to down sizing the volume of the IC which can totally reduces the power losses caused in the duration of a semi-con- ductor switching.展开更多
An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices...An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices,and mutually compensatory circuitry technology is also employed to double the output current furthermore.The simulation results using Hspice simulation software,show that the output currents of a single unit circuit and two unit circuits connected in a mutually compensatory manner of the improved converter is about 12.5mA and 26mA,respectively.The power conversion efficiency of the mutually compensatory circuit can amount to 73%,while its output voltage ripple is less than 1.5%.The converter is fabricated in standard Rohm 0.35μm CMOS technology in Tokyo University of Japan.The test result indicates that the output current of 9.8mA can be obtained from a single unit circuit of the improved converter.展开更多
We present a new hybrid digital pulse-width modulator (DPWM) for digital DC-DC converters that employs a ring-oscillator/counter structure. Based on a temperature/process compensation technique and a novel digital c...We present a new hybrid digital pulse-width modulator (DPWM) for digital DC-DC converters that employs a ring-oscillator/counter structure. Based on a temperature/process compensation technique and a novel digital controller, the proposed DPWM can not only offer temperature/process-independent pulse widths, but also operate at a much higher clock frequency than the existing delay-line/counter DPWM structure. Post-simulation results show that with our DPWM, the system clock frequency reaches 156.9MHz while the worst variation,in a temperature range of 0 to 100℃under all process corners,is only± 9.4%.展开更多
High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the per...High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.展开更多
In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A ...In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A two-loop control is employed for a buck converter. The robustness of the sliding mode controlled buck converter system is tested for step load changes and input voltage variations. The theoretical predictions are validated by means of simulations. Matlab/Simulink is used for the simulations. The simulation results are presented. The buck converter is tested with operating point changes and parameter uncertainties. Fast dynamic response of the output voltage and robustness to load and input voltage variations are obtained.展开更多
This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to c...This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.展开更多
We demonstrate superb large-area verticalβ-Ga_(2)O_(3)SBDs with a Schottky contact area of 1×1 mm^(2)and obtain a high-efficiency DC-DC converter based on the device.Theβ-Ga_(2)O_(3)SBD can obtain a forward cur...We demonstrate superb large-area verticalβ-Ga_(2)O_(3)SBDs with a Schottky contact area of 1×1 mm^(2)and obtain a high-efficiency DC-DC converter based on the device.Theβ-Ga_(2)O_(3)SBD can obtain a forward current of 8 A with a forward volt-age of 5 V,and has a reverse breakdown voltage of 612 V.The forward turn-on voltage(VF)and the on-resistance(Ron)are 1.17 V and 0.46Ω,respectively.The conversion efficiency of theβ-Ga_(2)O_(3)SBD-based DC-DC converter is 95.81%.This work indicates the great potential of Ga_(2)O_(3)SBDs and relevant circuits in power electronic applications.展开更多
This paper proposes the new cascaded series parallel design for improved dynamic performance of DC-DC buck boost converters by a new Sliding Mode Control (SMC) method. The converter is controlled using Sliding Mode Co...This paper proposes the new cascaded series parallel design for improved dynamic performance of DC-DC buck boost converters by a new Sliding Mode Control (SMC) method. The converter is controlled using Sliding Mode Control method that utilizes the converter’s duty ratio to determine the skidding surface. System modeling and simulation results are presented. The results also showed an improved overall performance over typical PID controller, and there was no overshoot or settling time, tracking the desired output nicely. Improved converter performance and robustness were expected.展开更多
文摘Modelling of bidirectional full bridge DC-DC converter as one of the most applicable converters has received significant attention. Mathematical modelling reduces the simulation time in comparison with detailed circuit response;moreover it is convenient for controller design purpose. Due to simple and effective methodology, average state space is the most common method among the modelling methods. In this paper a bidirectional full bridge converter is modelled by average state space and for each mode of operations a controller is designed. Attained mathematical model results are in a close agreement with detailed circuit simulation.
文摘The interests on energy storage schemes, bidirectional dc-dc converter and uninterruptible power supplies have been increasing nowadays as there wide researches are undertaken in the area of electric vehicles. A modified bi directional class-E resonant dc-dc converter is introduced here in this proposed topology for the application in electric vehicles. The advantages of soft switching techniques have been utilized for making analysis simple. The main advantage here in this system is that it can operate in a wide range of frequencies with minimal switching loss in transistors. This paper elaborates a detailed analysis on converter design and the same has been simulated and verified in Matlab/Simulink.
基金This work was supported by China Railway Corporation Science and Technology Research and Development Project(P2021J038).
文摘In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.
基金National Natural Science Foundation of China(No.41004027)Cooperation Innovation Projects of Ministry of Education,China(No.OSR-02-01)
文摘To suppress peak voltage on rectifier diodes in a full bridge( FB) converter,the mechanism of peak voltage was analyzed and an improved FB converter was proposed. One reason for peak voltage is the resonance of the transformer's leakage inductance and the rectifier diodes' junction capacitances. The other reason is that the fast reverse recovery current of the rectifier diodes flows through the transformer's leakage inductance. An H bridge composed of four diodes,an auxiliary inductance, and a clamping winding were adopted in the proposed converter,and peak voltage was suppressed by varying the equivalent inductance, principally in different operating modes. Experimental results demonstrate that the peak voltage of rectifier diodes decreases by 43%,the auxiliary circuit does not lead to additional loss, and the rising rate, resonant frequency,and amplitude of the rectifier diodes' voltage decrease.Peak voltage and electromagnetic interference( EMI) of rectifier diodes are suppressed.
基金Sponsored by the National Science Foundation of China (Grant No.50477009).
文摘EMI Filter Design and Performance for isolated full bridge buck converter is developed in this paper. In order to design a high performance EMI filter, many issues need to be considered beforehand. Some important issues including accurate model of converter components, parasitic elements, its effect on EMI noise and impedance mismatch are included in this paper. A numerical prediction of EMI/EMC has the potential to evaluate EMI performances at the design stage and before prototyping. It can also help reduce the post-prototype EMC cost by minimizing late redesign and modifications of a design implementation. Saber simulator is used to analyze the EMI noises and EMI filter’s performance. Conducted EMI noise measurement and EMI filter design of isolated full bridge buck converter has been achieved while successfully satisfying the FCC class B limits in the frequency range from 150 kHz to 30 MHz. Simulation results are compared with experimental data and the effectiveness of the EMI simulation approach is demonstrated.
文摘In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.
文摘To prevent sub-harmonic oscillation and improve the stability and load capacity of the system,a piecewise linear slope compensation circuit is designed. Compared with the traditional design, this circuit provides a compensation signal whose slope varies from different duty cycles at - 40-85℃ ,and reduces the negative effect of slope compensation on the system's load capacity and transient response. A current mode PWM Boost DC-DC converter employing this slope compensation circuit is implemented in a UMC 0.6μm-BCD process. The results indicate that the circuit works well and effectively,and the load capacity is increased by 20%. The chip area of the piecewise linear slope compensation circuit is 0.01mm^2 ,which consumes only 8μA quiescent current,and the efficiency ranges up to 93%.
文摘Based on ZVZCS (zero voltage zero current switching) full bridge converter technique, a novel inverter welding power supply is designed, in which the secondary side of the transformer adopts passive clamping circuit to reduce voltage stress of rectifying components. This supply can realize power switches ZVS (zero voltage switching ) or ZCS (zero current switching) within a very wide range of load; Only through setting up blocking capacitor in the primary side of transformer, the power transformer's bias in the full-bridge converter is suppressed and the primary current can be reset easily. In addition, how to calculate the blocking capacitor and its influence to power supply performance are also subjects discussed in this paper.
文摘Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can be achieved. This paper presents a fuzzy logic control for dual active bridge series resonant converters for DC smart grid application. The DC smart grid consists of wind turbine and photovoltaic generators, controllable and DC loads, and power converters. The proposed control method has been applied to the controllable load's and the grid side's dual active bridge series resonant converters for attaining control of the power system. It has been used for management of controllable load's state of charge, DC feeder's voltage stability during the loads and power variations from wind energy and photovoltaic generation and power flow management between the grid side and the DC smart grid. The effectiveness of the proposed DC smart grid operation has been verified by simulation results obtained by using MATLAB and PLECS cards.
文摘A current-mode DC-DC buck converter with high stability is presented. The loop gain's expression of the current-mode converter is derived by employing an advanced model of a current-mode control converter. After analyzing the loop gain's expression, which illustrates the method of selecting suitable frequency compensation for the control loop,a novel pole-zero tracking frequency compensation is proposed. Based on theoretical analysis, a DC-DC buck converter with high stability is designed with 0.5μm-CMOS technology. The simulated results reveal that the stability of the converter is independent of the load current and the input voltage. Moreover,the converter provides a full load transient response setting time of less than 5μs and overshoots and undershoots of less than 30mV.
文摘A high efficiency full-bridge converter is investigated and implemented in this paper. The measured data result from the other converter implemented by IC UCC3895 is to compare with that of the previous converter. This full-bridge converter proposed and implemented converter can obtain about 96% power efficiency in conversion procedure when compared with that of 90%, which were ever published by the conventional techniques. Apart from, the L-C resonance circuits were developed and embedded into the popular PWM (pulse width modulation) power converter, which is referred as the soft-switching, so as to down sizing the volume of the IC which can totally reduces the power losses caused in the duration of a semi-con- ductor switching.
文摘An integrated 3.3V/1.2V SC DC-DC converter operating under 10MHz with a fixed duty radio of 0.5 is presented.To improve the output current of the converter,CMOS technology is adopted to fabricate the switching devices,and mutually compensatory circuitry technology is also employed to double the output current furthermore.The simulation results using Hspice simulation software,show that the output currents of a single unit circuit and two unit circuits connected in a mutually compensatory manner of the improved converter is about 12.5mA and 26mA,respectively.The power conversion efficiency of the mutually compensatory circuit can amount to 73%,while its output voltage ripple is less than 1.5%.The converter is fabricated in standard Rohm 0.35μm CMOS technology in Tokyo University of Japan.The test result indicates that the output current of 9.8mA can be obtained from a single unit circuit of the improved converter.
文摘We present a new hybrid digital pulse-width modulator (DPWM) for digital DC-DC converters that employs a ring-oscillator/counter structure. Based on a temperature/process compensation technique and a novel digital controller, the proposed DPWM can not only offer temperature/process-independent pulse widths, but also operate at a much higher clock frequency than the existing delay-line/counter DPWM structure. Post-simulation results show that with our DPWM, the system clock frequency reaches 156.9MHz while the worst variation,in a temperature range of 0 to 100℃under all process corners,is only± 9.4%.
文摘High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.
文摘In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A two-loop control is employed for a buck converter. The robustness of the sliding mode controlled buck converter system is tested for step load changes and input voltage variations. The theoretical predictions are validated by means of simulations. Matlab/Simulink is used for the simulations. The simulation results are presented. The buck converter is tested with operating point changes and parameter uncertainties. Fast dynamic response of the output voltage and robustness to load and input voltage variations are obtained.
文摘This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.
基金supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61925110, 61821091, 62004184 and 62234007the Key-Area Research and Development Program of Guangdong Province under Grant No. 2020B010174002
文摘We demonstrate superb large-area verticalβ-Ga_(2)O_(3)SBDs with a Schottky contact area of 1×1 mm^(2)and obtain a high-efficiency DC-DC converter based on the device.Theβ-Ga_(2)O_(3)SBD can obtain a forward current of 8 A with a forward volt-age of 5 V,and has a reverse breakdown voltage of 612 V.The forward turn-on voltage(VF)and the on-resistance(Ron)are 1.17 V and 0.46Ω,respectively.The conversion efficiency of theβ-Ga_(2)O_(3)SBD-based DC-DC converter is 95.81%.This work indicates the great potential of Ga_(2)O_(3)SBDs and relevant circuits in power electronic applications.
文摘This paper proposes the new cascaded series parallel design for improved dynamic performance of DC-DC buck boost converters by a new Sliding Mode Control (SMC) method. The converter is controlled using Sliding Mode Control method that utilizes the converter’s duty ratio to determine the skidding surface. System modeling and simulation results are presented. The results also showed an improved overall performance over typical PID controller, and there was no overshoot or settling time, tracking the desired output nicely. Improved converter performance and robustness were expected.