Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can a...Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.展开更多
A combined method of high performance liquid chromatograph-elecrtrospray-ionization mass spectrometer(HPLC-ESI-MS/MS) coupled with a photodiode array detector(HPLC-DAD) and principal component analysis(PCA) was ...A combined method of high performance liquid chromatograph-elecrtrospray-ionization mass spectrometer(HPLC-ESI-MS/MS) coupled with a photodiode array detector(HPLC-DAD) and principal component analysis(PCA) was applied to the qualitative and quantitative analyses of alkaloids in Cortex Phellodendri(CP) samples, and to the differentiation of two species of CP, Cortex Phellodendri Chinensis(CPC) and Cortex Phellodendri Amurensis(CPA). Twenty-two peaks appeared in the HPLC-MS base peak chromatogram of CP detected by the HPLC-ESI-MS/MS analysis, and the alkaloids were identified according to the MSn data, the known MS fragmentation rules and the literature data. Five alkaloids including berberine, palmatine, jatrorrhizine, phellodendrine and magnoflorine were simultaneously determinated by the HPLC-DAD. Berberine was the primary component in all CP samples, and the contents of berberine and palmatine were exploited to be two critical parameters for effective discrimination between the two species of CP. The average content of berberine in CPC(58.75 mg/g) was higher than that in CPA(9.16 mg/g), while the content of palmatine was less, only 0.25 mg/g in CPC and 4.19 mg/g in CPA. With the use of PCA, samples datasets were separated successfully into two different clusters corresponding to the two species, and berberine, pahnatine, phellodendrine and magnoflorine contribute most to the above mentioned calssifying . The proposed method oroved to be a useful tool in the aualitv control of Chinese herbal medicines.展开更多
The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous a...The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies.展开更多
Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ...Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.展开更多
This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to ach...This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.展开更多
The aromatic compounds,including o-xylene,m-xylene,p-xylene,and ethylbenzene,primarily originate from the catalytic reforming of crude oil,and have a wide variety of applications.However,because of similar physical an...The aromatic compounds,including o-xylene,m-xylene,p-xylene,and ethylbenzene,primarily originate from the catalytic reforming of crude oil,and have a wide variety of applications.However,because of similar physical and chemical properties,these compounds are difficult to be identified by gas chromatography(GC)without standard samples.With the development of modern nuclear magnetic resonance(NMR)techniques,NMR has emerged as a powerful and efficient tool for the rapid analysis of complex and crude mixtures without purification.In this study,the parameters of one-dimensional(1D)total correlation spectroscopy(TOCSY)NMR techniques,including 1D selective gradient TOCSY and 1D chemicalshift-selective filtration(CSSF)with TOCSY,were optimized to obtain comprehensive molecular structure information.The results indicate that the overlapped signals in NMR spectra of nonpolar aromatic compounds(including o-xylene,m-xylene,p-xylene and ethylbenzene),polar aromatic compounds(benzyl alcohol,benzaldehyde,benzoic acid),and aromatic compounds with additional conjugated bonds(styrene)can be resolved in 1D TOCSY.More importantly,full molecular structures can be clearly distinguished by setting appropriate mixing time in 1D TOCSY.This approach simplifies the NMR spectra,provides structural information of entire molecules,and can be applied for the analysis of other structural isomers.展开更多
Objective To explore the major compound in Polygonati Rhizoma(Huang Jing,黄精)for quality control.Methods The major compound was isolated and analyzed by liquid chromatography-mass spectrometry(LC-MS),and subsequently...Objective To explore the major compound in Polygonati Rhizoma(Huang Jing,黄精)for quality control.Methods The major compound was isolated and analyzed by liquid chromatography-mass spectrometry(LC-MS),and subsequently further identified by nuclear magnetic resonance(NMR).Thin layer chromatography(TLC)was optimized based on the previous methods reported in the Chinese Pharmacopeia(2015 edition).Results The major compound was isolated from the natural material and identified as linoleic acid.A high performance liquid chromatography(HPLC)method with robust linearity(R2=0.9997),specificity,precision,stability,repeatability and recovery was developed for linoleic acid determination.TLC chromatogram was improved significantly after optimization for qualitative analysis.Conclusions The optimized TLC method is practical and can be adopted for quality control of Polygonati Rhizoma(Huang Jing,黄精).The levels of linoleic acid vary between species of Polygonati Rhizoma(Huang Jing,黄精),with Polygonatum cyrtonema Hua(Jiang Xing Huang Jing,姜型黄精)showing the highest contents.This study provides valuable information for quality control of Polygonati Rhizoma(Huang Jing,黄精).展开更多
Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to th...Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.展开更多
Abstract Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were p...Abstract Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were prepared with an automatic device, which was composed of a loading and unloading module, a quantitatively adding solution module, a rapid heating and drying module and a precise rotating module. The experimental results showed that the sample preparation methods had no significant effect on sample distribution and the LIBS signal accumulated in 20 pulses was stable and repeatable. With an increasing amount of the sample solution on the graphite flake, the peak intensity at Cu I 324.75 nm accorded with the exponential function with a correlation coefficient of 0.9963 and the background intensity remained unchanged. The limit of detection (LOD) was calculated through linear fitting of the peak intensity versus the concentration. The LOD decreased rapidly with an increasing amount of sample solution until the amount exceeded 20 mL and the correlation coefficient of exponential function fitting was 0.991. The LOD of Pb, Ni, Cd, Cr and Zn after evaporating different amounts of sample solution on the graphite flakes was measured and the variation tendency of their LOD with sample solution amounts was similar to the tendency for Cu. The experimental data and conclusions could provide a reference for automatic sample preparation and heavy metal in situ detection.展开更多
Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance f...Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance for the Mars exploration in the near future.In this study,we explored the quantitative analysis of LIBS for the one-dimensional Chem Cam(an instrument containing a LIBS spectrometer and a Remote Micro-Imager)spectral data whose spectra are produced by the Chem Cam team using LIBS under the Mars-like atmospheric conditions.We constructed a convolutional neural network(CNN)regression model with unified parameters for all oxides,which is efficient and concise.CNN that has the excellent capability of feature extraction can effectively overcome the chemical matrix effects that impede the prediction accuracy of regression models.Firstly,we explored the effects of four activation functions on the performance of the CNN model.The results show that the CNN model with the hyperbolic tangent(tanh)function outperforms the CNN models with the other activation functions(the rectified linear unit function,the linear function and the Sigmoid function).Secondly,we compared the performance among the CNN models using different optimization methods.The CNN model with the stochastic gradient descent optimization and the initial learning rate?=?0.0005 achieves satisfactory performance compared to the other CNN models.Finally,we compared the performance of the CNN model,the model based on support vector regression(SVR)and the model based on partial least square regression(PLSR).The results exhibit the CNN model is superior to the SVR model and the PLSR model for all oxides.Based on the above analysis,we conclude the CNN regression model can effectively improve the prediction accuracy of LIBS.展开更多
pH is one of the significant properties of soil,and is closely related to the decomposition of soil organic matter,anion-cation balance,growth of plants and many other soil processes.In the present work,laser-induced ...pH is one of the significant properties of soil,and is closely related to the decomposition of soil organic matter,anion-cation balance,growth of plants and many other soil processes.In the present work,laser-induced breakdown spectroscopy(LIBS) technique coupled with random forest(RF) was proposed to quantify the pH of soil.First,LIBS spectra of soil was collected,and some common elements in soil were identified based on the National Institute of Science and Technology database.Then,in order to obtain a better predictive result,the influence of different input variables(full spectrum,different spectral ranges,the intensity of characteristic bands and characteristic lines) on the predictive performance of RF calibration model was explored with the evaluation indicators of root mean square error(RMSE) and coefficient of determination(R2),the characteristic bands of four elements(AI,Ca,Mg and Si) were determined as the optimal input variables.Finally,the predictive performance of RF calibration model was compared with partial least squares calibration model with the optimal input variables and model parameters,and RF calibration model showed a better predictive performance,and the four evaluation indicators of R_p^2,RMSEP,mean absolute error and mean relative error were 0.9687,0.1285,0.1114 and 0.0136,respectively.It indicates that LIBS technique coupled with RF algorithm is an effective method for pH determination of soil.展开更多
The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and co...The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).展开更多
Laser-induced breakdown spectroscopy(LIBS)is a capable technique for elementary analysis,while LIBS quantitation is still under development.In quantitation,precise laser focusing plays an important role because it ens...Laser-induced breakdown spectroscopy(LIBS)is a capable technique for elementary analysis,while LIBS quantitation is still under development.In quantitation,precise laser focusing plays an important role because it ensures the distance between the laser and samples.In the present work,we employed spectral intensity as a direct way to assist laser focusing in LIBS quantitation for copper alloys.It is found that both the air emission and the copper line could be used to determine the position of the sample surface by referencing the intensity maximum.Nevertheless,the fine quantitation was only realized at the position where the air emission(e.g.O(I)777.4 nm)reached intensity maximum,and also in this way,a repeatable quantitation was successfully achieved even after 120 days.The results suggested that the LIBS quantitation was highly dependent on the focusing position of the laser,and spectra-assisted focusing could be a simple way to find the identical condition for different samples’detection.In the future,this method might be applicable in field measurements for LIBS analysis of solids.展开更多
Contact force in a clearance joint affects the dynamic characteristics and leads to nonlinear response of the mechanism.It is necessary to assess the nonlinearity of contact force quantitatively.Therefore,a new method...Contact force in a clearance joint affects the dynamic characteristics and leads to nonlinear response of the mechanism.It is necessary to assess the nonlinearity of contact force quantitatively.Therefore,a new method named contact-force entropy weight is proposed in this paper.This method presents a comprehensive description of the judgment matrix in the X,Y,and Z directions.To assess the influence degrees of different clearances and angular velocities on the contact force,the method is applied to numerical calculation and simulation of a six-bar mechanism with a clearance joint to illustrate its application and investigate the influence degree of angular velocity and clearance on the contact force.By combining the simulation results and theoretical calculations,the influence degrees of different clearances and angular velocities on the contact-force entropy weight of the six-bar mechanism with a clearance joint are revealed.It is found that the angular velocity has a significant influence on the contact force entropy weight of the clearance joint,showing that the contact-force entropy weight is a feasible new method of assessing non-linearity of contact force quantitatively.The method gives a theoretical reference for quantitatively analyzing the nonlinear dynamics.展开更多
To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantit...To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.展开更多
A micellar electrokinetic chromatographic (MECC) method with sodium cholate as pseudostationary phase was proposed for the separation and quantitation of two analgesic formulations containing acetaminophen, dextro-met...A micellar electrokinetic chromatographic (MECC) method with sodium cholate as pseudostationary phase was proposed for the separation and quantitation of two analgesic formulations containing acetaminophen, dextro-methorphan hydrobromide, phenylpropanolamine hydrochloride, and chlorpheniramine maleate. The internal standard method was proved to be able to yield satisfactory results even with a modular CE instrument with RSD between 0.6 similar to 2.1%, and recoveries ranging from 98.1 similar to 99.9%.展开更多
Two capillary electrophoresis methods were developed for the determination of the active constituents in four anti-hrpertensive formulations.These active constituents are nitrendipine and atenolol in Tabellae Nile, an...Two capillary electrophoresis methods were developed for the determination of the active constituents in four anti-hrpertensive formulations.These active constituents are nitrendipine and atenolol in Tabellae Nile, and hydrochlorothiazide, amiloride hydrochloride, captopril, and enalapril maleate in three other tablet formulations,respectively. The internal standard method was employed for quantitation with RSD between 1 .2~4.3%, recoveries ranging from 93. 1 ~ 101 .0%.展开更多
Quantitative study of the impact of Shanghai World Expo on green GDP (GGDP) is significant for deploying sustainable development policy in China. The formula of GGDP is: GGDP = GDP--the loss of natural resources en...Quantitative study of the impact of Shanghai World Expo on green GDP (GGDP) is significant for deploying sustainable development policy in China. The formula of GGDP is: GGDP = GDP--the loss of natural resources environment relegation cost + comprehensive utilized value of waste. Based on this, the study employed vector autoregressive (VAR) model to predict the value of GGDP and other economic variables on condition that there was no Shanghai World Expo. Then Influence of Expo is defined as the rate of increase of GGDP. The result demonstrated that Shanghai World Expo had accelerated the growth rate of GGDP vastly with the elimination of effect of Beijing Olympics. Additionally, the quantitative analysis between GGDP and other economic variables suggested GGDP would replace GDP to evaluate the development of economy. Finally, the paper proposed that incidents like World Expo can enhance the level of influence for a country and that post-impact of Shanghai Expo should continue to be used to promote GGDP and that GGDP should serve as one of the indicators in assessment of political achievement.展开更多
Continental extensional basin is one of the most important oil and ga s bearing basin types in the world and is main basin type in east China. The qu antitative analysis for this kind of basins has important significa...Continental extensional basin is one of the most important oil and ga s bearing basin types in the world and is main basin type in east China. The qu antitative analysis for this kind of basins has important significance for oil a nd gas exploration and development in east China. Sedimentary basin is a geodyna mic system including sedimentary basin itself, the crust and the mantle under it . Basin evolution is affected by regional structure stress field geophysical sta tus in the deep of the earth and outer condition, such as climate changes, water supplying etc. Based on the concept of basin dynamic system, the authors develo ped a geological process modeling and analyzing system-Continental Extensional B asin Quantitative Analysis System (CEBQAS). The system consists of basin geodyna mic modeling, structural modeling, sedimentary modeling, geologic analysis, data base and display subsystem. The system can reappear structural and sedimentary e volution history to an extent and provide basin geodynamic information as well a s retrieving parameter for modeling from original data such as logging, core an d seismic data .展开更多
An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normaliza...An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normalization methods with the partial least squares(PLS) method are developed for quantitative analysis of molybdenum(Mo) element in the multi-component alloy,which is the first wall material in the Experimental Advanced Superconducting Tokamak. In this study, the different spectral normalization methods(total spectral area normalization,background normalization, and reference line normalization) are investigated for reducing the uncertainty and improving the accuracy of spectral measurement. The results indicates that the approach of PLS based on inter-element interference is significantly better than the conventional PLS methods as well as the univariate linear methods in the various pressure for molybdenum element analysis.展开更多
基金financial supports from National Natural Science Foundation of China(No.62205172)Huaneng Group Science and Technology Research Project(No.HNKJ22-H105)Tsinghua University Initiative Scientific Research Program and the International Joint Mission on Climate Change and Carbon Neutrality。
文摘Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.
基金Supported by the National Natural Science Foundation of China(No30725045)the Foundation of Eleventh Five-Year-Plan of China(No2008ZX09202-002)+1 种基金the Shanghai Leading Academic Discipline Project, China(NoB906)the Scientific Foundation of Shanghai City, China(No07DZ19702)
文摘A combined method of high performance liquid chromatograph-elecrtrospray-ionization mass spectrometer(HPLC-ESI-MS/MS) coupled with a photodiode array detector(HPLC-DAD) and principal component analysis(PCA) was applied to the qualitative and quantitative analyses of alkaloids in Cortex Phellodendri(CP) samples, and to the differentiation of two species of CP, Cortex Phellodendri Chinensis(CPC) and Cortex Phellodendri Amurensis(CPA). Twenty-two peaks appeared in the HPLC-MS base peak chromatogram of CP detected by the HPLC-ESI-MS/MS analysis, and the alkaloids were identified according to the MSn data, the known MS fragmentation rules and the literature data. Five alkaloids including berberine, palmatine, jatrorrhizine, phellodendrine and magnoflorine were simultaneously determinated by the HPLC-DAD. Berberine was the primary component in all CP samples, and the contents of berberine and palmatine were exploited to be two critical parameters for effective discrimination between the two species of CP. The average content of berberine in CPC(58.75 mg/g) was higher than that in CPA(9.16 mg/g), while the content of palmatine was less, only 0.25 mg/g in CPC and 4.19 mg/g in CPA. With the use of PCA, samples datasets were separated successfully into two different clusters corresponding to the two species, and berberine, pahnatine, phellodendrine and magnoflorine contribute most to the above mentioned calssifying . The proposed method oroved to be a useful tool in the aualitv control of Chinese herbal medicines.
基金Project supported by the financial support from the National Key R&D Program of China(Grant No.2021YFB3201100)the National Natural Science Foundation of China(Grant No.52172128)the Top Young Talents Programme of Xi’an Jiaotong University.
文摘The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.11872013).
文摘Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.
基金supported by the Major Science and TechnologyTechnol-ogy Projects in Gansu Province(No.22ZD6FA021-5)Industrial Support Project of Gansu Province(Nos.2023CYZC-19 and 2021CYZC-22)+1 种基金Science and Technol-ogy Project of Gansu Province(Nos.23YFFA0074,22JR5RA137,and 22JR5RA151)Central Leading Local Science and Technology Development Fund Projects(No.23ZYQA293).
文摘This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.
基金We thank the Natural Science Foundation of Shanxi Province(202103021224439)National Natural Science Foundation of China(22075308)for financial support.
文摘The aromatic compounds,including o-xylene,m-xylene,p-xylene,and ethylbenzene,primarily originate from the catalytic reforming of crude oil,and have a wide variety of applications.However,because of similar physical and chemical properties,these compounds are difficult to be identified by gas chromatography(GC)without standard samples.With the development of modern nuclear magnetic resonance(NMR)techniques,NMR has emerged as a powerful and efficient tool for the rapid analysis of complex and crude mixtures without purification.In this study,the parameters of one-dimensional(1D)total correlation spectroscopy(TOCSY)NMR techniques,including 1D selective gradient TOCSY and 1D chemicalshift-selective filtration(CSSF)with TOCSY,were optimized to obtain comprehensive molecular structure information.The results indicate that the overlapped signals in NMR spectra of nonpolar aromatic compounds(including o-xylene,m-xylene,p-xylene and ethylbenzene),polar aromatic compounds(benzyl alcohol,benzaldehyde,benzoic acid),and aromatic compounds with additional conjugated bonds(styrene)can be resolved in 1D TOCSY.More importantly,full molecular structures can be clearly distinguished by setting appropriate mixing time in 1D TOCSY.This approach simplifies the NMR spectra,provides structural information of entire molecules,and can be applied for the analysis of other structural isomers.
基金We thank for the funding support from the National Standardization Construction in TCMs of China(No.ZYBZH-Y-HUN-23)National Key Research and Development Projects of China(No.2018YFC1707903)Key Research and Development Projects of Hunan Province(No.2018SK2119).
文摘Objective To explore the major compound in Polygonati Rhizoma(Huang Jing,黄精)for quality control.Methods The major compound was isolated and analyzed by liquid chromatography-mass spectrometry(LC-MS),and subsequently further identified by nuclear magnetic resonance(NMR).Thin layer chromatography(TLC)was optimized based on the previous methods reported in the Chinese Pharmacopeia(2015 edition).Results The major compound was isolated from the natural material and identified as linoleic acid.A high performance liquid chromatography(HPLC)method with robust linearity(R2=0.9997),specificity,precision,stability,repeatability and recovery was developed for linoleic acid determination.TLC chromatogram was improved significantly after optimization for qualitative analysis.Conclusions The optimized TLC method is practical and can be adopted for quality control of Polygonati Rhizoma(Huang Jing,黄精).The levels of linoleic acid vary between species of Polygonati Rhizoma(Huang Jing,黄精),with Polygonatum cyrtonema Hua(Jiang Xing Huang Jing,姜型黄精)showing the highest contents.This study provides valuable information for quality control of Polygonati Rhizoma(Huang Jing,黄精).
基金Projects(51678071,51278071)supported by the National Natural Science Foundation of ChinaProjects(14KC06,CX2015BS02)supported by Changsha University of Science&Technology,China
文摘Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.
基金supported by National Natural Science Foundation of China(No.60908018)National High Technology Research and Development Program of China(No.2013AA065502)Anhui Province Outstanding Youth Science Fund of China(No.1108085J19)
文摘Abstract Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were prepared with an automatic device, which was composed of a loading and unloading module, a quantitatively adding solution module, a rapid heating and drying module and a precise rotating module. The experimental results showed that the sample preparation methods had no significant effect on sample distribution and the LIBS signal accumulated in 20 pulses was stable and repeatable. With an increasing amount of the sample solution on the graphite flake, the peak intensity at Cu I 324.75 nm accorded with the exponential function with a correlation coefficient of 0.9963 and the background intensity remained unchanged. The limit of detection (LOD) was calculated through linear fitting of the peak intensity versus the concentration. The LOD decreased rapidly with an increasing amount of sample solution until the amount exceeded 20 mL and the correlation coefficient of exponential function fitting was 0.991. The LOD of Pb, Ni, Cd, Cr and Zn after evaporating different amounts of sample solution on the graphite flakes was measured and the variation tendency of their LOD with sample solution amounts was similar to the tendency for Cu. The experimental data and conclusions could provide a reference for automatic sample preparation and heavy metal in situ detection.
基金supported by the Pre-research project on Civil Aerospace Technologies(No.D020102)funded by China National Space Administration(CNSA)the funding from National Natural Science Foundation of China(Nos.U1931211,41573056)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2019MD008)the Major Research Project of Shandong Province(No.GG201809130208)。
文摘Laser-induced breakdown spectroscopy(LIBS)has been applied to many fields for the quantitative analysis of diverse materials.Improving the prediction accuracy of LIBS regression models is still of great significance for the Mars exploration in the near future.In this study,we explored the quantitative analysis of LIBS for the one-dimensional Chem Cam(an instrument containing a LIBS spectrometer and a Remote Micro-Imager)spectral data whose spectra are produced by the Chem Cam team using LIBS under the Mars-like atmospheric conditions.We constructed a convolutional neural network(CNN)regression model with unified parameters for all oxides,which is efficient and concise.CNN that has the excellent capability of feature extraction can effectively overcome the chemical matrix effects that impede the prediction accuracy of regression models.Firstly,we explored the effects of four activation functions on the performance of the CNN model.The results show that the CNN model with the hyperbolic tangent(tanh)function outperforms the CNN models with the other activation functions(the rectified linear unit function,the linear function and the Sigmoid function).Secondly,we compared the performance among the CNN models using different optimization methods.The CNN model with the stochastic gradient descent optimization and the initial learning rate?=?0.0005 achieves satisfactory performance compared to the other CNN models.Finally,we compared the performance of the CNN model,the model based on support vector regression(SVR)and the model based on partial least square regression(PLSR).The results exhibit the CNN model is superior to the SVR model and the PLSR model for all oxides.Based on the above analysis,we conclude the CNN regression model can effectively improve the prediction accuracy of LIBS.
基金support of National Natural Science Foundation of China(Nos.21873076,21675123,21605123,21375105)Natural Science Basic Research Plan in Shaanxi Province of China(No.2018JQ2013)Scientific Research Plan Projects of Shaanxi Education Department(No.17JK0780)。
文摘pH is one of the significant properties of soil,and is closely related to the decomposition of soil organic matter,anion-cation balance,growth of plants and many other soil processes.In the present work,laser-induced breakdown spectroscopy(LIBS) technique coupled with random forest(RF) was proposed to quantify the pH of soil.First,LIBS spectra of soil was collected,and some common elements in soil were identified based on the National Institute of Science and Technology database.Then,in order to obtain a better predictive result,the influence of different input variables(full spectrum,different spectral ranges,the intensity of characteristic bands and characteristic lines) on the predictive performance of RF calibration model was explored with the evaluation indicators of root mean square error(RMSE) and coefficient of determination(R2),the characteristic bands of four elements(AI,Ca,Mg and Si) were determined as the optimal input variables.Finally,the predictive performance of RF calibration model was compared with partial least squares calibration model with the optimal input variables and model parameters,and RF calibration model showed a better predictive performance,and the four evaluation indicators of R_p^2,RMSEP,mean absolute error and mean relative error were 0.9687,0.1285,0.1114 and 0.0136,respectively.It indicates that LIBS technique coupled with RF algorithm is an effective method for pH determination of soil.
基金The National Natural Science Foundation of China under contract Nos 41875061 and 41775165.
文摘The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).
基金financially supported by the Provincial Key Research and Development Program of Shandong,China(No.2019GHZ010)the Natural Science Foundation of Shandong Province(No.ZR2020MF123)+1 种基金National Natural Science Foundation of China(Nos.61975190 and12174359)the Fundamental Research Funds for the Central Universities(No.202161002)。
文摘Laser-induced breakdown spectroscopy(LIBS)is a capable technique for elementary analysis,while LIBS quantitation is still under development.In quantitation,precise laser focusing plays an important role because it ensures the distance between the laser and samples.In the present work,we employed spectral intensity as a direct way to assist laser focusing in LIBS quantitation for copper alloys.It is found that both the air emission and the copper line could be used to determine the position of the sample surface by referencing the intensity maximum.Nevertheless,the fine quantitation was only realized at the position where the air emission(e.g.O(I)777.4 nm)reached intensity maximum,and also in this way,a repeatable quantitation was successfully achieved even after 120 days.The results suggested that the LIBS quantitation was highly dependent on the focusing position of the laser,and spectra-assisted focusing could be a simple way to find the identical condition for different samples’detection.In the future,this method might be applicable in field measurements for LIBS analysis of solids.
基金Project supported by the National Natural Science Foundation of China(Grant No.51875531)。
文摘Contact force in a clearance joint affects the dynamic characteristics and leads to nonlinear response of the mechanism.It is necessary to assess the nonlinearity of contact force quantitatively.Therefore,a new method named contact-force entropy weight is proposed in this paper.This method presents a comprehensive description of the judgment matrix in the X,Y,and Z directions.To assess the influence degrees of different clearances and angular velocities on the contact force,the method is applied to numerical calculation and simulation of a six-bar mechanism with a clearance joint to illustrate its application and investigate the influence degree of angular velocity and clearance on the contact force.By combining the simulation results and theoretical calculations,the influence degrees of different clearances and angular velocities on the contact-force entropy weight of the six-bar mechanism with a clearance joint are revealed.It is found that the angular velocity has a significant influence on the contact force entropy weight of the clearance joint,showing that the contact-force entropy weight is a feasible new method of assessing non-linearity of contact force quantitatively.The method gives a theoretical reference for quantitatively analyzing the nonlinear dynamics.
基金Funded by the International Science&Technology Cooperation Program of Hubei Province of China(No.2022EHB024)。
文摘To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.
文摘A micellar electrokinetic chromatographic (MECC) method with sodium cholate as pseudostationary phase was proposed for the separation and quantitation of two analgesic formulations containing acetaminophen, dextro-methorphan hydrobromide, phenylpropanolamine hydrochloride, and chlorpheniramine maleate. The internal standard method was proved to be able to yield satisfactory results even with a modular CE instrument with RSD between 0.6 similar to 2.1%, and recoveries ranging from 98.1 similar to 99.9%.
文摘Two capillary electrophoresis methods were developed for the determination of the active constituents in four anti-hrpertensive formulations.These active constituents are nitrendipine and atenolol in Tabellae Nile, and hydrochlorothiazide, amiloride hydrochloride, captopril, and enalapril maleate in three other tablet formulations,respectively. The internal standard method was employed for quantitation with RSD between 1 .2~4.3%, recoveries ranging from 93. 1 ~ 101 .0%.
文摘Quantitative study of the impact of Shanghai World Expo on green GDP (GGDP) is significant for deploying sustainable development policy in China. The formula of GGDP is: GGDP = GDP--the loss of natural resources environment relegation cost + comprehensive utilized value of waste. Based on this, the study employed vector autoregressive (VAR) model to predict the value of GGDP and other economic variables on condition that there was no Shanghai World Expo. Then Influence of Expo is defined as the rate of increase of GGDP. The result demonstrated that Shanghai World Expo had accelerated the growth rate of GGDP vastly with the elimination of effect of Beijing Olympics. Additionally, the quantitative analysis between GGDP and other economic variables suggested GGDP would replace GDP to evaluate the development of economy. Finally, the paper proposed that incidents like World Expo can enhance the level of influence for a country and that post-impact of Shanghai Expo should continue to be used to promote GGDP and that GGDP should serve as one of the indicators in assessment of political achievement.
文摘Continental extensional basin is one of the most important oil and ga s bearing basin types in the world and is main basin type in east China. The qu antitative analysis for this kind of basins has important significance for oil a nd gas exploration and development in east China. Sedimentary basin is a geodyna mic system including sedimentary basin itself, the crust and the mantle under it . Basin evolution is affected by regional structure stress field geophysical sta tus in the deep of the earth and outer condition, such as climate changes, water supplying etc. Based on the concept of basin dynamic system, the authors develo ped a geological process modeling and analyzing system-Continental Extensional B asin Quantitative Analysis System (CEBQAS). The system consists of basin geodyna mic modeling, structural modeling, sedimentary modeling, geologic analysis, data base and display subsystem. The system can reappear structural and sedimentary e volution history to an extent and provide basin geodynamic information as well a s retrieving parameter for modeling from original data such as logging, core an d seismic data .
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 2017YFE0301304)National Natural Science Foundation of China (Nos. 11 475 039, 11 605 023, 11 705 020)+2 种基金China Postdoctoral Science Foundation (Nos. 2016M591423, 2017T100172, 2018M630285)the Fundamental Research Funds for the Central Universities (Nos. DUT15RC(3)072, DUT17RC(4)53, DUT18LK38)Liaoning Provincial Natural Science Foundation of China (No. 20 170 540 153)
文摘An experimental setup has been designed and realized in order to optimize the characteristics of laser-induced breakdown spectroscopy system working in various pressure environments. An approach combined the normalization methods with the partial least squares(PLS) method are developed for quantitative analysis of molybdenum(Mo) element in the multi-component alloy,which is the first wall material in the Experimental Advanced Superconducting Tokamak. In this study, the different spectral normalization methods(total spectral area normalization,background normalization, and reference line normalization) are investigated for reducing the uncertainty and improving the accuracy of spectral measurement. The results indicates that the approach of PLS based on inter-element interference is significantly better than the conventional PLS methods as well as the univariate linear methods in the various pressure for molybdenum element analysis.