Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious oper...Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious operations,such as destroying evidence. Therefore, detection and localization of imageinpainting operations are essential. Recent research shows that high-pass filteringfull convolutional network (HPFCN) is applied to image inpainting detection andachieves good results. However, those methods did not consider the spatial location and channel information of the feature map. To solve these shortcomings, weintroduce the squeezed excitation blocks (SE) and propose a high-pass filter attention full convolutional network (HPACN). In feature extraction, we apply concurrent spatial and channel attention (scSE) to enhance feature extraction and obtainmore information. Channel attention (cSE) is introduced in upsampling toenhance detection and localization. The experimental results show that the proposed method can achieve improvement on ImageNet.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62172059,61972057 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2020JJ4626+1 种基金Scientific Research Fund of Hunan Provincial Education Department of China under Grant 19B004Postgraduate Scientific Research Innovation Project of Hunan Province under Grant CX20210811.
文摘Image inpainting based on deep learning has been greatly improved.The original purpose of image inpainting was to repair some broken photos, suchas inpainting artifacts. However, it may also be used for malicious operations,such as destroying evidence. Therefore, detection and localization of imageinpainting operations are essential. Recent research shows that high-pass filteringfull convolutional network (HPFCN) is applied to image inpainting detection andachieves good results. However, those methods did not consider the spatial location and channel information of the feature map. To solve these shortcomings, weintroduce the squeezed excitation blocks (SE) and propose a high-pass filter attention full convolutional network (HPACN). In feature extraction, we apply concurrent spatial and channel attention (scSE) to enhance feature extraction and obtainmore information. Channel attention (cSE) is introduced in upsampling toenhance detection and localization. The experimental results show that the proposed method can achieve improvement on ImageNet.