期刊文献+
共找到41,633篇文章
< 1 2 250 >
每页显示 20 50 100
Web Layout Design of Large Cavity Structures Based on Topology Optimization 被引量:1
1
作者 Xiaoqiao Yang Jialiang Sun Dongping Jin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2665-2689,共25页
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas... Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures. 展开更多
关键词 Topology optimization lightweight design web layout design cavity structure
下载PDF
OptoGPT: A foundation model for inverse design in optical multilayer thin film structures 被引量:1
2
作者 Taigao Ma Haozhu Wang L.Jay Guo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第7期4-16,共13页
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design... Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously. 展开更多
关键词 multilayer thin film structure inverse design foundation models deep learning structural color
下载PDF
A Hybrid Level Set Optimization Design Method of Functionally Graded Cellular Structures Considering Connectivity
3
作者 Yan Dong Kang Zhao +1 位作者 Liang Gao Hao Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期1-18,共18页
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr... With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures. 展开更多
关键词 Hybrid level set method functionally graded cellular structure CONNECTIVITY interpolated transition optimization design
下载PDF
Research on the Course of Principles of Concrete Structure Design
4
作者 Yuhuan Shi Jinping Hu +2 位作者 Xue Lin Zhinan Jiang Jialian Qi 《Journal of Contemporary Educational Research》 2024年第2期80-84,共5页
Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmit... Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmits professional knowledge for students,enhances the students’professional ability,and further carries out in-depth research on the course to bring a better teaching effect for students.The article mainly focuses on the research of the principles of concrete structure design course,conducts an analysis of the teaching characteristics of the principles of concrete structure design course,and reasonably sets the teaching content from the optimization of the course teaching objectives;innovative course teaching methods can deepen the effect of knowledge understanding;reform of experimental practice teaching can lay down the effect of the internalization of knowledge,etc.The in-depth description and discussion of the relevant aspects of the research aim to provide guidelines for related research. 展开更多
关键词 Concrete structure design principle Course characteristics Teaching innovation Course research
下载PDF
Resistive switching behavior and mechanism of HfO_(x) films with large on/off ratio by structure design
5
作者 黄香林 王英 +2 位作者 黄慧香 段理 郭婷婷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期660-665,共6页
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra... Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure. 展开更多
关键词 HfO_(x)film resistive switching structure design interface modulation
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
6
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 Structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Optimization method of reef structure design based on hydrodynamic model
7
作者 WANG Hong ZNANG Xue +4 位作者 ZHANG Jingwei GAO Yan FANG Enjun ZENG Xiangxi Dai Yuanyuan 《Marine Science Bulletin》 2024年第1期67-80,共14页
Artificial fish reef is a kind of artificial structure in water,which provides a necessary and safe place for aquatic life such as fish to inhabit,grow,and breed,and creates an environment suitable for fish growth,so ... Artificial fish reef is a kind of artificial structure in water,which provides a necessary and safe place for aquatic life such as fish to inhabit,grow,and breed,and creates an environment suitable for fish growth,so as to protect and multiply fishery resources.In a large time scale,the physical process of sea area can deeply affect the chemical process and biological process,so the structure characteristics of artificial reef are the key factors affecting the flow field effect around the reef.In this study,through the hydrodynamic experiments of four kinds of reef models,including big windows box reef,big and small windows box reef,"(卐)"shaped reef and double-layer shellfish breeding reef,the influence of single reef structure on the flow field effect is analyzed,and the force conditions of different reefs under the same incoming current velocity are obtained.According to the simulation results,the safety research and calculation of five kinds of reef models are carried out,and the volumes of vortex area and upwelling area behind four kinds of reef are obtained.Using hydrodynamic model to simulate the flow field effect of reef area,optimizing the reef structure design,improving the maximum biological trapping and proliferation effect of reef,can provide theoretical guidance and scientific and technological support for the construction of reef area. 展开更多
关键词 HYDRODYNAMIC MODEL artificial reef structure design
下载PDF
Design and Engineering of Urban Interchange Ramp Bridge Structure
8
作者 Yuxiao Zhang Maode Yang 《Journal of Architectural Research and Development》 2024年第2期62-67,共6页
This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural de... This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural design ideas of this urban interchange ramp bridge,which can be used as a reference for future construction of the same bridge. 展开更多
关键词 Interchange ramp Bridge structure design Pier structure Foundation structure Bridge deck structure
下载PDF
“3 Degrees and 8 Combinations” Teaching Mode of Anti-Seismic Design of Building Structures
9
作者 Huina Li 《Journal of Contemporary Educational Research》 2023年第4期12-17,共6页
Earthquakes pose a significant threat to people’s property and personal safety.Improving the teaching of civil engineering and building structure anti-seismic design courses can enable students to do a good job in an... Earthquakes pose a significant threat to people’s property and personal safety.Improving the teaching of civil engineering and building structure anti-seismic design courses can enable students to do a good job in anti-seismic design in the future and effectively reduce the damage on buildings caused by earthquakes.In this paper,we analyzed the basic characteristics of a course in civil engineering major,which is Anti-Seismic Design of Building Structures,and the shortcomings of traditional teaching.It is proposed that the 3-degrees and 8-combinations teaching mode of anti-seismic design of building structures can effectively improve students’autonomy and enthusiasm in learning,helps to cultivate professional ethics among students,and improve their ability to apply what they have learned. 展开更多
关键词 Anti-Seismic design of Building structures 3-Degrees and 8-Combinations Anti-seismic structure
下载PDF
Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation 被引量:2
10
作者 Yingjie Zhao Xing Yin +4 位作者 Pengwei Li Ziqiu Ren Zhenkun Gu Yiqiang Zhang Yanlin Song 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期565-594,共30页
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement... Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. 展开更多
关键词 Perovskite materials Crystal structure design Micro/nano-structure manipulation Working mechanism Multifunctional photodetectors
下载PDF
The action mechanisms and structures designs of F-containing functional materials for high performance oxygen electrocatalysis 被引量:1
11
作者 Gang Wang Shuwei Jia +7 位作者 Hongjing Gao Yewen Shui Jie Fan Yixia Zhao Lei Li Weimin Kang Nanping Deng Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期377-397,I0010,共22页
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent... Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts. 展开更多
关键词 Fluorine-containing functional materials Action mechanisms and structure designs Density functional theory Oxygen evolution reaction Oxygen reduction reaction
下载PDF
AN EFFICIENT ASSESSMENT METHOD FOR INTELLIGENT DESIGN RESULTS OF SHEAR WALL STRUCTURE BASED ON MECHANICAL PERFORMANCE,MATERIAL CONSUMPTION,AND EMPIRICAL RULES
12
作者 覃思中 廖文杰 +1 位作者 林元庆 陆新征 《工程力学》 EI CSCD 北大核心 2023年第12期148-159,共12页
Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This... Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This study introduces an assessment method used in the intelligent design and optimization of shear wall structures that effectively combines mechanical analysis and formulaic encoding of empirical rules.First,the critical information about the structure was extracted through data structuring.Second,an empirical rule assessment method was developed based on the engineer's experience and design standards to complete a preliminary assessment and screening of the structure.Subsequently,an assessment method based on mechanical performance and material consumption was used to compare different structural schemes comprehensively.Finally,the assessment effectiveness was demonstrated using a typical case.Compared to traditional assessment methods,the proposed method is more comprehensive and significantly more efficient,promoting the intelligent transformation of structural design. 展开更多
关键词 shear wall structure structural assessment data structuring intelligent design structural optimization
下载PDF
Rail Internal Defect Detection Method Based on Enhanced Network Structure and Module Design Using Ultrasonic Images
13
作者 Fupei Wu Xiaoyang Xie Weilin Ye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期277-288,共12页
Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operat... Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operation of high-speed trains.For this reason,a rail internal defect detection method based on an enhanced network structure and module design using ultrasonic images is proposed in this paper.First,a data augmentation method was used to extend the existing image dataset to obtain appropriate image samples.Second,an enhanced network structure was designed to make full use of the high-level and low-level feature information in the image,which improved the accuracy of defect detection.Subsequently,to optimize the detection performance of the proposed model,the Mish activation function was used to design the block module of the feature extraction network.Finally,the pro-posed rail defect detection model was trained.The experimental results showed that the precision rate and F1score of the proposed method were as high as 98%,while the model’s recall rate reached 99%.Specifically,good detec-tion results were achieved for different types of defects,which provides a reference for the engineering application of internal defect detection.Experimental results verified the effectiveness of the proposed method. 展开更多
关键词 Ultrasonic detection Rail defects detection Deep learning Enhanced network structure Module design
下载PDF
Construction of Teaching Case Base of Anti-Seismic Design of Building Structure
14
作者 Huina Li 《Journal of Architectural Research and Development》 2023年第3期13-18,共6页
Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Sei... Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Seismic Design of Building Structures,the obscure theoretical knowledge can be taught to students in the form of examples,and the knowledge becomes intuitive.In this way,the students’understanding of anti-seismic design theory and the efficiency of teaching can be improved,and the students’interest in learning can be stimulated. 展开更多
关键词 Building structure Anti-seismic design Case base
下载PDF
Curriculum Reform of“Woven Fabric Structure Design and Application”in Higher Vocational College Based on Industry-College Partnerships
15
作者 Yan Chen Christina Andin 《Sociology Study》 2023年第2期75-82,共8页
The curriculum“Woven Fabric Structure Design and Application”is the core curriculum of textile majors in higher vocational colleges,which plays a very important role in the cultivation of students’vocational abilit... The curriculum“Woven Fabric Structure Design and Application”is the core curriculum of textile majors in higher vocational colleges,which plays a very important role in the cultivation of students’vocational ability and professional quality.The curriculum reform of“Woven Fabric Structure Design and Application”through the deep cooperation of industry-college partnerships,the comprehensive analysis of the major training objectives and graduation requirements,the redesign of the curriculum teaching content,the improvement of the teaching method and the examination method,has achieved good results. 展开更多
关键词 woven fabric structure design and application curriculum reform higher vocational education industry-college partnerships
下载PDF
Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries 被引量:5
16
作者 Sinian Yang Hongxia Du +5 位作者 Yuting Li Xiangsi Wu Bensheng Xiao Zhangxing He Qiaobao Zhang Xianwen Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1531-1552,共22页
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect... Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. 展开更多
关键词 Zinc ion battery structure design of substrate materials Dendrite-free 3D Zn anode
下载PDF
Current situation and development trend of design methods for subgrade structure of high speed railways
17
作者 Yangsheng Ye Degou Cai +3 位作者 Qianli Zhang Shaowei Wei Hongye Yan Lin Geng 《Railway Sciences》 2023年第3期289-309,共21页
Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed ... Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil. 展开更多
关键词 High speed railway Subgrade engineering Subgrade bed structure design method Existing research Development trend
下载PDF
Durability zonation standard of concrete structure design 被引量:5
18
作者 金伟良 吕清芳 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期98-104,共7页
Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions an... Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions and importance of structures based on the theory of life cycle cost(LCC). First, the basic concept of DZS for concrete structure design is defined. Then the basic principles for DZS are established. The factors for zonation according to natural environmental conditions and structural importance are identified. The usefulness of DZS by citing a real application for concrete highway bridges in Zhejiang Province is demonstrated. Finally, durability regulations are provided accordingly to zonation. 展开更多
关键词 durability zonation standard concrete structure design zonation map life cycle cost
下载PDF
Integrated Assembly Structure Design Within Concurrent Engineering
19
作者 常向青 宁汝新 +2 位作者 姚珺 张旭 唐承统 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期306-311,共6页
Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system gen... Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system generates the assembly scheme using the case? based method, then assigns the design requirements into each component of the assembly. The detail design for each component can be performed under these design constraints. In order to practise concurrent design, the system sends the final design result to the upstream section and downstream section through PDM to achieve information sharing and integration. 展开更多
关键词 concurrent engineering assembly structure design case-based reasoning design constraints
下载PDF
Design,preparation,application of advanced array structured materials and their action mechanism analyses for high performance lithium-sulfur batteries
20
作者 Nanping Deng Xiaofan Feng +7 位作者 Yongbing Jin Zhaozhao Peng Yang Feng Ying Tian Yong Liu Lu Gao Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期266-303,I0007,共39页
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme... Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB. 展开更多
关键词 Array structured materials Preparation methods and structural designs Action mechanism analyses Advanced Li-S batteries Excellent electrochemical performances and safety
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部