期刊文献+
共找到111,597篇文章
< 1 2 250 >
每页显示 20 50 100
Construction of a Cu@hollow TS-1 nanoreactor based on a hierarchical full-spectrum solar light utilization strategy for photothermal synergistic artificial photosynthesis
1
作者 Sixian Zhu Qiao Zhao +5 位作者 Hongxia Guo Li Liu Xiao Wang Xiwei Qi Xianguang Meng Wenquan Cui 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期25-36,共12页
The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosyn... The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis. 展开更多
关键词 artificial photosynthesis full spectrum NANOREACTORS photothermal catalysis
下载PDF
Cascade utilization of full spectrum solar energy for achieving simultaneous hydrogen production and all-day thermoelectric conversion
2
作者 Tuo Zhang Liang Dong +8 位作者 Baoyuan Wang Jingkuo Qu Xiaoyuan Ye Wengao Zeng Ze Gao Bin Zhu Ziying Zhang Xiangjiu Guan Liejin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期318-327,共10页
Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina... Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability. 展开更多
关键词 Hybrid solar energy conversion system Photocatalytic overall seawatersplitting Thermoelectric power generation Phase change materials All-day operation
下载PDF
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting 被引量:2
3
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Solar wind ion charge state distributions and compound cross sections for solar wind charge exchange X-ray emission 被引量:1
4
作者 Dimitra Koutroumpa 《Earth and Planetary Physics》 EI CSCD 2024年第1期105-118,共14页
Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilitie... Solar Wind Charge eXchange X-ray(SWCX) emission in the heliosphere and Ea rth’s exosphere is a hard to avoid signal in soft Xray obse rvations of astrophysical targets.On the other hand,the X-ray imaging possibilities offered by the SWCX process has led to an increasing number of future dedicated space missions for investigating the solar wind-terrestrial inte ractions and magnetospheric interfaces.In both cases,accurate modelling of the SWCX emission is key to correctly interpret its signal,and remove it from obse rvations,when needed.In this paper,we compile solar wind abundance measurements from ACE for different solar wind types,and atomic data from literature,including charge exchange cross-sections and emission probabilities,used fo r calculating the compound cross-section a for the SWCX X-ray emission.We calculate a values for charge-exchange with H and He,relevant to soft X-ray energy bands(0.1-2.0 keV)for various solar wind types and solar cycle conditions. 展开更多
关键词 solar wind charge exchange X-rays MAGNETOSPHERE HELIOSPHERE
下载PDF
High performance wide bandgap perovskite solar cell with low V_(OC) deficit less than 0.4 V 被引量:1
5
作者 Haikuo Guo Fuhua Hou +8 位作者 Xuli Ning Xiaoqi Ren Haoran Yang Rui Liu Tiantian Li Chengjun Zhu Ying Zhao Wei Li Xiaodan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期313-322,共10页
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p... Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs. 展开更多
关键词 Pb management Perovskite solar cell STRAIN Wide bandgap Stability
下载PDF
Exploring impedance spectrum for lithium-ion batteries diagnosis and prognosis:A comprehensive review 被引量:1
6
作者 Xinghao Du Jinhao Meng +2 位作者 Yassine Amirat Fei Gao Mohamed Benbouzid 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期464-483,I0010,共21页
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis... Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed. 展开更多
关键词 Lithium-ion battery Impedance spectrum Temperature monitoring Failure diagnosis Health prognosis
下载PDF
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:2
7
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture solar heating Passive radiative cooling Temperature swing adsorption
下载PDF
Step‑by‑Step Modulation of Crystalline Features and Exciton Kinetics for 19.2%Efficiency Ortho‑Xylene Processed Organic Solar Cells 被引量:1
8
作者 Bosen Zou Weiwei Wu +10 位作者 Top Archie Dela Pena Ruijie Ma Yongmin Luo Yulong Hai Xiyun Xie Mingjie Li Zhenghui Luo Jiaying Wu Chuluo Yang Gang Li He Yan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期258-272,共15页
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.... With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future. 展开更多
关键词 Organic solar cells Ternary design Solvent selection Flouro-methoxylated end group Morphological ordering
下载PDF
Two methods for separating the magnetospheric solar wind charge exchange soft X-ray emission from the diffuse X-ray background 被引量:2
9
作者 YingJie Zhang TianRan Sun +5 位作者 JenniferACarter WenHao Liu Steve Sembay ShuiNai Zhang Li Ji Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期119-132,共14页
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo... Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options. 展开更多
关键词 solar wind charge exchange(SWCX) ROSAT All-Sky Survey(RASS) soft X-ray X-ray imaging MAGNETOSPHERE
下载PDF
Manipulating the Macroscopic and Microscopic Morphology of Large-Area Gravure-Printed ZnO Films for High-Performance Flexible Organic Solar Cells 被引量:1
10
作者 Zhenguo Wang Jingbo Guo +6 位作者 Yaqin Pan Jin Fang Chao Gong Lixin Mo Qun Luo Jian Lin Changqi Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期229-239,共11页
Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological... Gravure printing is a promising large-scale fabrication method for flexible organic solar cells(FOSCs)because it is compatible with two-dimension patternable roll-to-roll fabrication.However,the unsuitable rheological property of ZnO nanoinks resulted in unevenness and looseness of the gravure-printed ZnO interfacial layer.Here we propose a strategy to manipulate the macroscopic and microscopic of the gravure-printed ZnO films through using mixed solvent and poly(vinylpyrrolidone)(PVP)additive.The regulation of drying speed effectively manipulates the droplets fusion and leveling process and eliminates the printing ribbing structure in the macroscopic morphology.The additive of PVP effectively regulates the rheological property and improves the microscopic compactness of the films.Following this method,large-area ZnO∶PVP films(28×9 cm^(2))with excellent uniformity,compactness,conductivity,and bending durability were fabricated.The power conversion efficiencies of FOSCs with gravure-printed AgNWs and ZnO∶PVP films reached 14.34%and 17.07%for the 1 cm^(2)PM6:Y6 and PM6∶L8-BO flexible devices.The efficiency of 17.07%is the highest value to date for the 1 cm^(2)FOSCs.The use of mixed solvent and PVP addition also significantly enlarged the printing window of ZnO ink,ensuring high-quality printed thin films with thicknesses varying from 30 to 100 nm. 展开更多
关键词 flexible organic solar cell gravure printing large-area flexible interfacial layer rheology properties zinc oxide
下载PDF
Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature,High-Efficiency Carbon-Electrode CsPbBr_(3) Solar Cells 被引量:1
11
作者 Zeyang Zhang Weidong Zhu +10 位作者 Tianjiao Han Tianran Wang Wenming Chai Jiaduo Zhu He Xi Dazheng Chen Gang Lu Peng Dong Jincheng Zhang Chunfu Zhang Yue Hao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期168-175,共8页
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en... Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved. 展开更多
关键词 carbon-electrode perovskite solar cells crystal orientation engineering CsPbBr_(3) low temperature two-step sequential deposition
下载PDF
Solar fuel production through concentrating light irradiation
12
作者 Yiwei Fu Yi Wang +2 位作者 Jie Huang Kejian Lu Maochang Liu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1550-1580,共31页
The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar f... The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar fuel production is in its early stages of development,constrained by low conversion efficiency and challenges in scaling up production.Concentrated solar energy(CSE)technology has matured alongside the rapid growth of solar thermal power plants.This review provides an overview of current CSE methods and solar fuel production,analyzes their integration compatibility,and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry,thermochemistry,and photo-thermal co-catalysis for solar fuel production.The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE.Lastly,it explores emerging novel CSE technology methods in the field of solar fuel production. 展开更多
关键词 Concentrated solar energy solar fuel Photo-electrochemistry THERMOCHEMISTRY Photo-thermal co-catalysis
下载PDF
Dynamic Update Scheme of Spectrum Information Based on Spectrum Opportunity Incentive in the Database-Assisted Dynamic Spectrum Management
13
作者 Zhang Yu Chen Yong +1 位作者 He Panfeng Cai Yueming 《China Communications》 SCIE CSCD 2024年第3期75-90,共16页
To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic upd... To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic update mechanism of SI based on spectrum opportunity incentive is established, in which spectrum users are encouraged to actively assist the database to update SI in real time. Secondly, the information update contribution(IUC) of spectrum opportunity is defined to describe the cost of accessing spectrum opportunity for heterogeneous spectrum users, and the profit of SI update obtained by the database from spectrum allocation. The process that the database determines the IUC of spectrum opportunity and spectrum user selects spectrum opportunity is mapped to a Hotelling model. Thirdly, the process of determining the IUC of spectrum opportunities is further modelled as a Stackelberg game by establishing multiple virtual spectrum resource providers(VSRPs) in the database. It is proved that there is a Nash Equilibrium in the game of determining the IUC of spectrum opportunities by VSRPs. Finally, an algorithm of determining the IUC based on a genetic algorithm is designed to achieve the optimal IUC. The-oretical analysis and simulation results show that the proposed method can quickly find the optimal solution of the IUC, and ensure that the spectrum resource provider can obtain the optimal profit of SI update. 展开更多
关键词 database-assisted dynamic spectrum management HOTELLING information updating contribution spectrum information updating STACKELBERG
下载PDF
A Tutorial Review of the Solar Power Curve: Regressions, Model Chains, and Their Hybridization and Probabilistic Extensions
14
作者 Dazhi YANG Xiang’ao XIA Martin János MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1023-1067,共45页
Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent... Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review. 展开更多
关键词 review energy meteorology solar power curve model chain solar power prediction
下载PDF
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation
15
作者 Juan Zhang Xiaofei Ji +13 位作者 Xiaoting Wang Liujiang Zhang Leyu Bi Zhenhuang Su Xingyu Gao Wenjun Zhang Lei Shi Guoqing Guan Abuliti Abudula Xiaogang Hao Liyou Yang Qiang Fu Alex K.‑Y.Jen Linfeng Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期571-582,共12页
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai... A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication. 展开更多
关键词 Inverted perovskite solar cells Perovskite solar modules Two-step film formation CRYSTALLIZATION Defect passivation
下载PDF
Correction to:Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling
16
作者 Meng Lian Wei Ding +5 位作者 Song Liu Yufeng Wang Tianyi Zhu Yue‑E.Miao Chao Zhang Tianxi Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期418-418,共1页
Tianxi Liu was missed to be denoted as a corresponding author in the article.Both Chao Zhang and Tianxi Liu are the corresponding authors of this article.The original article has been corrected.Open Access This articl... Tianxi Liu was missed to be denoted as a corresponding author in the article.Both Chao Zhang and Tianxi Liu are the corresponding authors of this article.The original article has been corrected.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution,and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third-party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder. 展开更多
关键词 solar otherwise HIGHLY
下载PDF
Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells
17
作者 Devthade Vidyasagar Yeonghun Yun +13 位作者 Jae Yu Cho Hyemin Lee Kyung Won Kim Yong Tae Kim Sung Woong Yang Jina Jung Won Chang Choi Seonu Kim Rajendra Kumar Gunasekaran Seok Beom Kang Kwang Heo Dong Hoe Kim Jaeyeong Heo Sangwook Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期317-326,I0008,共11页
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski... Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell. 展开更多
关键词 Perovskite solar cells 2PACz Monolithic tandem solar cells Wide bandgap
下载PDF
Non-destructive buffer enabling near-infrared-transparent inverted inorganic perovskite solar cells toward 1400 h light-soaking stable perovskite/Cu(In,Ga)Se_(2) tandem solar cells
18
作者 Yu Zhang Zhaoheng Tang +14 位作者 Zhongyang Zhang Jiahong Tang Minghua Li Siyuan Zhu Wenyan Tan Xi Jin Tongsheng Chen Jinsong Hu Chao Zhou Chunlei Yang Qijie Liang Xugang Guo Weimin Li Weiqiang Chen Yan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期622-629,I0013,共9页
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co... Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems. 展开更多
关键词 CsPbI_(3)perovskite Inverted perovskite solar cells Tandem solar cells Buffer layer Stability
下载PDF
Is There a Bright Future for Solar Power from Space?
19
作者 Mitch Leslie 《Engineering》 SCIE EI CAS CSCD 2024年第2期9-11,共3页
Late in the evening of May 22,2023,a team of researchers at the California Institute of Technology(Caltech)in Pasadena,CA,USA,measured a faint beam of microwaves emanating from a solar-powered satellite 550 km overhea... Late in the evening of May 22,2023,a team of researchers at the California Institute of Technology(Caltech)in Pasadena,CA,USA,measured a faint beam of microwaves emanating from a solar-powered satellite 550 km overhead.Satellites send signals to Earth all the time,but this occasion was different.The satellite car-ried a unique transmitter developed by the Caltech researchers,a 30 cm by 30 cm array of polyimide and copper designed to be lightweight and flexible.Using that transmitter,the satellite became the first spacecraft to direct solar power captured in space to the Earth’s surface. 展开更多
关键词 EARTH solar LIGHTWEIGHT
下载PDF
Author Correction:Recent Progress in Interfacial Dipole Engineering for Perovskite Solar Cells
20
作者 Yinyi Ma Jue Gong +1 位作者 Peng Zeng Mingzhen Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期500-500,共1页
In the version of this Article originally published online,there was an error in the schematics of Figures 2b and 2c.These errors have now been corrected in the original article.
关键词 corrected ERROR solar
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部