In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ...In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.展开更多
This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The ma...This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The main iteration consists of a feasibility step and several centrality steps.The authors introduce a specific kernel function instead of the classic logarithmical barrier function to induce the feasibility step,so the analysis of the feasibility step is different from that of Roos' s.This kernel function has a finite value on the boundary.The result of iteration complexity coincides with the currently known best one for infeasible interior-point methods for P_*(κ) LCP.Some numerical results are reported as well.展开更多
This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists...This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.展开更多
基金Supported by University Science Research Project of Anhui Province(2023AH052921)Outstanding Youth Talent Project of Anhui Province(gxyq2021254)。
文摘In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.
基金supported by the Natural Science Foundation of Hubei Province under Grant No.2008CDZ047
文摘This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The main iteration consists of a feasibility step and several centrality steps.The authors introduce a specific kernel function instead of the classic logarithmical barrier function to induce the feasibility step,so the analysis of the feasibility step is different from that of Roos' s.This kernel function has a finite value on the boundary.The result of iteration complexity coincides with the currently known best one for infeasible interior-point methods for P_*(κ) LCP.Some numerical results are reported as well.
基金Supported by the National Natural Science Fund Finances Projects(71071119)
文摘This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.