The present study aims to analyze the state of the art of scientific studies about the Overtopping device used to convert sea wave energy into electrical energy,by means the Bibliometric methodology.The development of...The present study aims to analyze the state of the art of scientific studies about the Overtopping device used to convert sea wave energy into electrical energy,by means the Bibliometric methodology.The development of this study took place through the selection of articles from conference proceedings,as well as national and international journals.The Bibliometric methodology consists of a statistical tool that allows quantifying the measurement of production indexes.Using selected keywords,it was conducted a survey of studies in the online databases of Science Direct,SciELO and Google Scholar.The works found then went through a filtering process,in order to limit the Bibliometric study only to studies about Overtopping devices as sea Wave Energy Converter(WEC).Finally,the investigation of these selected articles was carried out under the optics of production and authorship study,content study and study of bibliographic references.Where it was identified growth in publications related to the topic,methodologies used and,among other indicators,the authors most cited in the analyzed articles.The predominant keywords used were“Wave Energy Converter”and“Overtopping”.It was noted that Brazilian universities are leaders in the productivity,presenting more than 36%of the scientific production regarding Overtopping WECs.展开更多
Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC d...Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.展开更多
We study entangling and disentangling functions of optical Fourier multiport devices in which input-output relation for the creation and annihilation operators is given by a finite Fourier transform. It is shown that ...We study entangling and disentangling functions of optical Fourier multiport devices in which input-output relation for the creation and annihilation operators is given by a finite Fourier transform. It is shown that these Fourier multiport devices can act as entanglement converters which can not only create entanglement from an unentangled state at the input but also destroy entanglement in an entangled state at the input. Creation and destruction of two-mode and three-mode entangled coherent states (ECSs) are investigated in detail. The creation and destruction of Bell-type two-mode ECS, GHZ-type and W-type three-mode ECSs are indicated explicitly through using Fourier four-port and six-port devices, respectively.展开更多
Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challeng...Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.展开更多
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec...In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,...Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,decay of radioactive isotopes,organic putrefaction and fermentation,human body heat,and so on,constitutes a huge energy flux circulating on the earth surface.However,most energy converters designed for the conversion of electromagnetic energy into electricity,such as photovoltaic cells,are mainly focused on using a narrow part of the solar energy lying in the visible spectrum,while thermomechanical engines that are fueled by heat in the broad energy range and then convert it into mechanical work or store it as mechanical deformation,are paid less attention.Although the efficiency of thermomechanical devices is relatively low,they can be applied to collect waste heat which otherwise contributes to negative climate changes.In this review,operational principles of thermomechanical energy converters and a description of basic devices and materials that utilize thermal energy are given.In addition to conventional macroscopic engines,based on thermoacoustic,thermomagnetic,thermoelastic,hydride heat converters,and shape memory alloys,the emergent devices are described which are classified as smart actuators,breathing frameworks,thermoacoustic micro-transducers,nanomechanical resonators,plasmomechanical systems,and optothermal walkers.The performance of the different types of thermomechanical energy converters is described and compared.展开更多
The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction w...The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction with ultra-capacitors have been chosen as the power supply. The originality of the proposed converter is to use a variable voltage of the DC bus of the vehicle. The goal is to allow a better energy management of the embedded sources onboard the vehicle by improving its energy efficiency. After presenting and explaining the topology of the converter, some simulation and experiments results are shown to highlight its different operation modes.展开更多
GaN (gallium nitride) buck-rectifier has been proposed to realize high power density ISOP (input series and output parallel)-IPOS (input parallel and output series) converter-based dc distribution system. The ul...GaN (gallium nitride) buck-rectifier has been proposed to realize high power density ISOP (input series and output parallel)-IPOS (input parallel and output series) converter-based dc distribution system. The ultra-low loss bi-directional switch can be developed by the GaN power device because of the low on-resistance, the high-speed switching behavior and its own device structure. The buck-rectifier using the GaN bi-directional switches has the potential to achieve higher power density than the commonly utilized boost-rectifier. Availability of the GaN-HEMT (high electron mobility transistor) for the buck rectifier has been verified taking the theoretical limit of the on-resistance and the switching loss energy into account. Design consideration for a high power density buck-rectifier has been also conducted and the application effect of the GaN bidirectional switches has been evaluated quantitatively. The ISOP-IPOS converter-based dc (direct current) distribution system takes full advantage of the buck-rectifier and the rectifier using GaN devices contributes to realizing higher power density dc distribution system.展开更多
基金Paiva,M.S.acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico–CNPq(Edital PIBIC-FURG)for the Cientific Iniciation scholarship.Isoldi,L.A.and Machado,B.N.thank the Fundação de AmparoàPesquisa do Rio Grande do Sul(FAPERGS)by the financial support(Edital 02/2017-PqG,process 17/2551-0001-111-2)Isoldi,L.A.also thanks to CNPq for his research grant(Process:306012/2017-0).
文摘The present study aims to analyze the state of the art of scientific studies about the Overtopping device used to convert sea wave energy into electrical energy,by means the Bibliometric methodology.The development of this study took place through the selection of articles from conference proceedings,as well as national and international journals.The Bibliometric methodology consists of a statistical tool that allows quantifying the measurement of production indexes.Using selected keywords,it was conducted a survey of studies in the online databases of Science Direct,SciELO and Google Scholar.The works found then went through a filtering process,in order to limit the Bibliometric study only to studies about Overtopping devices as sea Wave Energy Converter(WEC).Finally,the investigation of these selected articles was carried out under the optics of production and authorship study,content study and study of bibliographic references.Where it was identified growth in publications related to the topic,methodologies used and,among other indicators,the authors most cited in the analyzed articles.The predominant keywords used were“Wave Energy Converter”and“Overtopping”.It was noted that Brazilian universities are leaders in the productivity,presenting more than 36%of the scientific production regarding Overtopping WECs.
基金This work made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under ARPA-E and Power America Program and the CURENT Industry Partnership Program.
文摘Research on high voltage(HV)silicon carbide(SiC)power semiconductor devices has attracted much attention in recent years.This paper overviews the development and status of HV SiC devices.Meanwhile,benefits of HV SiC devices are presented.The technologies and challenges for HV SiC device application in converter design are discussed.The state-of-the-art applications of HV SiC devices are also reviewed.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10325523 and 10775048the National Fundamental Research Program of China under Grant No. 2007CB925204the Key Project of Education Department of Hunan Province under Grant No. 08w012
文摘We study entangling and disentangling functions of optical Fourier multiport devices in which input-output relation for the creation and annihilation operators is given by a finite Fourier transform. It is shown that these Fourier multiport devices can act as entanglement converters which can not only create entanglement from an unentangled state at the input but also destroy entanglement in an entangled state at the input. Creation and destruction of two-mode and three-mode entangled coherent states (ECSs) are investigated in detail. The creation and destruction of Bell-type two-mode ECS, GHZ-type and W-type three-mode ECSs are indicated explicitly through using Fourier four-port and six-port devices, respectively.
基金Project supported by the National Undergraduate Training Projects for Innovation and Entrepreneurship (Grant No. 5003182007)the National Natural Science Foundation of China (Grant No. 12074137)+1 种基金the National Key Research and Development Project of China (Grant No. 2021YFB2801903)the Natural Science Foundation from the Science,Technology,and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20220530161010023)。
文摘Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.
基金This work was supported by China Railway Corporation Science and Technology Research and Development Project(P2021J038).
文摘In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
基金grateful to the Ministry of Education and Sciences of Ukraine(https://mon.gov.ua)for continuing support(Project#М/66-2022).
文摘Thermal energy,i.e.,the electromagnetic energy in the infrared range that originates from the direct solar radiation,outgoing terrestrial radiation,waste heat from combustion of fuels,heat-emitting electrical devices,decay of radioactive isotopes,organic putrefaction and fermentation,human body heat,and so on,constitutes a huge energy flux circulating on the earth surface.However,most energy converters designed for the conversion of electromagnetic energy into electricity,such as photovoltaic cells,are mainly focused on using a narrow part of the solar energy lying in the visible spectrum,while thermomechanical engines that are fueled by heat in the broad energy range and then convert it into mechanical work or store it as mechanical deformation,are paid less attention.Although the efficiency of thermomechanical devices is relatively low,they can be applied to collect waste heat which otherwise contributes to negative climate changes.In this review,operational principles of thermomechanical energy converters and a description of basic devices and materials that utilize thermal energy are given.In addition to conventional macroscopic engines,based on thermoacoustic,thermomagnetic,thermoelastic,hydride heat converters,and shape memory alloys,the emergent devices are described which are classified as smart actuators,breathing frameworks,thermoacoustic micro-transducers,nanomechanical resonators,plasmomechanical systems,and optothermal walkers.The performance of the different types of thermomechanical energy converters is described and compared.
文摘The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction with ultra-capacitors have been chosen as the power supply. The originality of the proposed converter is to use a variable voltage of the DC bus of the vehicle. The goal is to allow a better energy management of the embedded sources onboard the vehicle by improving its energy efficiency. After presenting and explaining the topology of the converter, some simulation and experiments results are shown to highlight its different operation modes.
文摘GaN (gallium nitride) buck-rectifier has been proposed to realize high power density ISOP (input series and output parallel)-IPOS (input parallel and output series) converter-based dc distribution system. The ultra-low loss bi-directional switch can be developed by the GaN power device because of the low on-resistance, the high-speed switching behavior and its own device structure. The buck-rectifier using the GaN bi-directional switches has the potential to achieve higher power density than the commonly utilized boost-rectifier. Availability of the GaN-HEMT (high electron mobility transistor) for the buck rectifier has been verified taking the theoretical limit of the on-resistance and the switching loss energy into account. Design consideration for a high power density buck-rectifier has been also conducted and the application effect of the GaN bidirectional switches has been evaluated quantitatively. The ISOP-IPOS converter-based dc (direct current) distribution system takes full advantage of the buck-rectifier and the rectifier using GaN devices contributes to realizing higher power density dc distribution system.