期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(EMD) Ensemble EMD(EEMD) Complete EEMD with adaptive noise(ceemdan) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
下载PDF
基于CEEMDAN-SBiGRU-OMHA的短期电力负荷预测
2
作者 包广斌 刘晨 +2 位作者 张波 沈治名 罗曈 《计算机系统应用》 2024年第10期124-132,共9页
为了提高短期电力负荷预测的精准度,充分挖掘电力负荷数据的复杂相关性,提出了一种优化多头注意力机制的CEEMDAN-SBiGRU组合预测模型,改进了特征提取和特征融合两个模块.首先,采用自适应噪声完全集成经验模态分解(complete ensemble emp... 为了提高短期电力负荷预测的精准度,充分挖掘电力负荷数据的复杂相关性,提出了一种优化多头注意力机制的CEEMDAN-SBiGRU组合预测模型,改进了特征提取和特征融合两个模块.首先,采用自适应噪声完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将电力负荷数据分解成多个内在模态函数(IMF)和一个残差信号(RES);同时引入降噪自编码器DAE挖掘数据中受气象因素、工作日类型和温度变化的潜在特征.其次,将提取到的复杂特征输入至堆叠双向门控循环单元(stacked bidirectional gated recurrent unit,SBiGRU)模块中继续学习,以获取隐藏状态.最后,将获取的隐藏状态输入至加入残差机制和层归一化优化的多头注意力(optimized multi-head attention,OMHA)机制模块,可以准确地给重要特征分配更高的权重,解决噪声干扰问题.实验结果表明,CEEMDAN-SBiGRU-OMHA组合模型具有更高的精确性. 展开更多
关键词 短期电力负荷预测 自适应噪声完全集成经验模态分解(ceemdan) 堆叠双向门控循环单元(SBiGRU) 降噪自编码器 优化的多头注意力(OMHA)
下载PDF
基于CEEMDAN-VMD-PSO-LSTM模型的桥梁挠度预测 被引量:2
3
作者 郭永刚 张美霞 +2 位作者 王凯 刘立明 陈卫明 《安全与环境工程》 CAS CSCD 北大核心 2024年第3期150-159,共10页
针对桥梁运行阶段的健康状态监测,构建了CEEMDAN-VMD-PSO-LSTM模型对桥梁挠度进行预测。该模型主要分为二次模态分解平稳化、粒子群优化(PSO)算法和长短期记忆(LSTM)网络预测三大模块,共有5个步骤:①利用自适应噪声完备集合经验模态分解... 针对桥梁运行阶段的健康状态监测,构建了CEEMDAN-VMD-PSO-LSTM模型对桥梁挠度进行预测。该模型主要分为二次模态分解平稳化、粒子群优化(PSO)算法和长短期记忆(LSTM)网络预测三大模块,共有5个步骤:①利用自适应噪声完备集合经验模态分解(CEEMDAN)算法对桥梁原始挠度序列进行初次模态分解,分解为若干本征模态分解函数(IMF);②使用样本熵(SampEn/SE)计算各IMF分量的复杂度,并通过K-means聚类为高频、中频和低频3个IMF分量;③通过变分模态分解(VMD)算法对高频IMF分量进行二次模态分解;④分别对各个IMF分量通过PSO算法得出LSTM最优超参数组合;⑤将各最优超参数分别代入LSTM模型进行训练,并将各预测结果融合为最终的预测结果。结果表明:该预测方法具有最高的预测精度,为智慧桥梁的安全监测监控提供了新的技术方法。 展开更多
关键词 桥梁挠度预测 自适应噪声完备集合经验模态分解 变分模态分解 样本熵 K-MEANS聚类 粒子群优化 长短期记忆网络
下载PDF
Missing interpolation model for wind power data based on the improved CEEMDAN method and generative adversarial interpolation network 被引量:3
4
作者 Lingyun Zhao Zhuoyu Wang +4 位作者 Tingxi Chen Shuang Lv Chuan Yuan Xiaodong Shen Youbo Liu 《Global Energy Interconnection》 EI CSCD 2023年第5期517-529,共13页
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors... Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations. 展开更多
关键词 Wind power data repair Complete ensemble empirical mode decomposition with adaptive noise(ceemdan) Generative adversarial interpolation network(GAIN)
下载PDF
基于CEEMDAN-HT的永磁同步电机匝间短路振动信号故障特征提取研究 被引量:2
5
作者 夏焰坤 李欣洋 +1 位作者 任俊杰 寇坚强 《振动与冲击》 EI CSCD 北大核心 2024年第5期72-81,共10页
由于长时间处于高负荷运行状态,永磁同步电机(permanent magnet synchronous motor, PMSM)定子绕组线圈匝与匝之间的绝缘性能容易降低,导致出现匝间短路,此时电机的振动强度会发生改变。针对此现象,提出将自适应噪声完备经验模态分解(co... 由于长时间处于高负荷运行状态,永磁同步电机(permanent magnet synchronous motor, PMSM)定子绕组线圈匝与匝之间的绝缘性能容易降低,导致出现匝间短路,此时电机的振动强度会发生改变。针对此现象,提出将自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)与希尔伯特变换(Hilbert transform, HT)结合,构成一种CEEMDAN-HT非线性信号分析方法,并将其应用于提取振动信号故障特征。首先,利用CEEMDAN算法分解振动信号,得到一系列本征模态函数(intrinsic mode function, IMF),并将主元分析中的方差贡献率用于识别包含故障特征信息的IMF。其次,使用HT对方差贡献率较高的IMF进行分析,并以三维联合时频图呈现时间、瞬时频率与幅值,得到了主要故障特征。最后,使用ANSYS有限元软件建立了电机短路故障模型,并搭建了短路故障试验平台,通过对比有限元仿真结果与试验结果,对提出的方法进行了有效性和准确性验证。 展开更多
关键词 永磁同步电机(permanent magnet synchronous motor PMSM) 振动信号 自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise ceemdan) 特征提取 希尔伯特变换(Hilbert transform HT)
下载PDF
融合 OCEEMDAN的多模态互量纲一化与宽度学习改进的智能故障诊断
6
作者 李春林 陈滢 +3 位作者 胡钦太 柳琼青 熊建斌 张清华 《机床与液压》 北大核心 2024年第8期179-188,共10页
滚动轴承作为旋转机械的重要组成部分,在恶劣环境运行导致振动信号具有非线性和非平稳的特点,使得区分故障信号和正常信号变得困难。针对此,提出一种结合多模态互量纲一化(MMDI)与宽度学习系统(BLS)的智能故障诊断方法。通过优化完全自... 滚动轴承作为旋转机械的重要组成部分,在恶劣环境运行导致振动信号具有非线性和非平稳的特点,使得区分故障信号和正常信号变得困难。针对此,提出一种结合多模态互量纲一化(MMDI)与宽度学习系统(BLS)的智能故障诊断方法。通过优化完全自适应噪声集合经验模态(OCEEMDAN)与小波阈值对轴承观测信号进行分解处理,对有效的本征模态函数(IMF)重构并提取MDI,构建了一批MMDI;采用反向传播算法(BP)与堆叠模块方式优化BLS,改进的BLS算法能够快速识别不同的故障类型;最后通过凯斯西储大学轴承数据中心与某实验室提供的轴承数据集对所提方法进行验证,平均准确率分别为99.8%与100%,验证了方法的有效性。 展开更多
关键词 完全自适应噪声集合经验模态分解(ceemdan) 特征提取 互量纲一化指标 宽度学习系统(BLS) 故障诊断
下载PDF
基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测 被引量:3
7
作者 李芬 孙凌 +3 位作者 王亚维 屈爱芳 梅念 赵晋斌 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第6期806-818,共13页
针对光伏输出功率存在间歇性和波动性的问题,提出一种光伏功率短期区间预测模型.首先,该模型采用自适应噪声完备集合经验模态分解将历史光伏出力数据分解为不同的分量并按照其与赤纬角、时角等时序特征量的相关性定义为时序分量和随机分... 针对光伏输出功率存在间歇性和波动性的问题,提出一种光伏功率短期区间预测模型.首先,该模型采用自适应噪声完备集合经验模态分解将历史光伏出力数据分解为不同的分量并按照其与赤纬角、时角等时序特征量的相关性定义为时序分量和随机分量.其次,分别使用经过引力搜索算法优化的长短期记忆神经网络和支持向量回归模型对时序分量和随机分量进行预测.再次,叠加时序分量和随机分量的预测结果得到点预测结果.然后,对误差进行Johnson变换及正态分布建模后得到光伏功率区间预测结果.最后,利用算例验证该模型的有效性.结果表明:在不同天气情况下,上述模型比现有预测模型精度更高,具有较好的鲁棒性,能够基于预测值提供较为精准的置信区间. 展开更多
关键词 光伏功率预测 区间预测 自适应噪声完备集合经验模态分解 引力搜索算法 长短期记忆 支持向量回归 Johnson变换
下载PDF
基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取
8
作者 兀成龙 高翰林 +1 位作者 朱丹丹 李亚安 《振动与冲击》 EI CSCD 北大核心 2024年第13期190-197,216,共9页
当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出... 当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)相结合的空化噪声特征提取方法。首先,采用CEEMDAN方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(intrinsic mode function, IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(multi-scale improved permutation entropy, MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和试验结果表明,该方法具有更好的可分性。 展开更多
关键词 多尺度改进排列熵(MIPE) 自适应噪声完备经验模态分解(ceemdan) 空化噪声 特征提取
下载PDF
CEEMDAN-CNN-BiLSTM混合模型矿区地表沉降预测
9
作者 王凯 肖星星 +2 位作者 余永明 贾庆磊 赵思仲 《导航定位学报》 CSCD 北大核心 2024年第5期156-163,共8页
为了进一步发挥全球卫星导航系统(GNSS)实时监测优势,对时序数据中的潜藏特征与隐藏信息进行深度挖掘,提高地表沉降预测精度,提出基于自适应噪声完备集合经验模态分解(CEEMDAN)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的CEEMDA... 为了进一步发挥全球卫星导航系统(GNSS)实时监测优势,对时序数据中的潜藏特征与隐藏信息进行深度挖掘,提高地表沉降预测精度,提出基于自适应噪声完备集合经验模态分解(CEEMDAN)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的CEEMDAN-CNN-BiLSTM混合地表沉降预测方法:以皖北某大型煤矿开采工作面与工业广场区域为验证对象,对比分析稳定区域和重点监测区域数据形态;然后基于CEEMDAN重构监测站高程数据分量,输入CNN模型提取分量隐含信息;最后构建BiLSTM模型,实现对沉降监测点位数据的短期预测。实验结果表明,相较于传统的CNN和长短期记忆模型,CEEMDAN-CNN-BiLSTM混合模型可有效降低预测误差,其中平均绝对百分比误差(MAPE)的降低范围为40%~90%,而均方根(RMS)误差的降低范围为52%~87%;该模型在时空特征捕捉和泛化能力方面表现性能较好,可为GNSS时间序列短期预测提供更为精准和可靠的解决方案。 展开更多
关键词 沉降预测 自动化监测 时序数据 混合模型 自适应噪声完备集合经验模态分解(ceemdan)-卷积神经网络(CNN)-双向长短期记忆网络(BiLSTM)
下载PDF
基于CEEMDAN和TCN的变压器油中溶解气体含量预测
10
作者 张文乾 刘金凤 +2 位作者 江军 赵旭峰 范利东 《电力工程技术》 北大核心 2024年第3期192-200,233,共10页
准确预测油中溶解气体含量的变化趋势,对变压器的状态评价和寿命评估有着积极的作用。为了提高油中溶解气体预测的准确性,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adapti... 准确预测油中溶解气体含量的变化趋势,对变压器的状态评价和寿命评估有着积极的作用。为了提高油中溶解气体预测的准确性,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络(time convolution network,TCN)的油中溶解气体预测方法。首先,通过CEEMDAN方法将油中溶解气体含量的原始序列分解为多个本征模态分量,并将其中的稳定分量与非稳定分量分离;其次,对本征模态分量分别建立TCN并预测未来趋势变化;最后,叠加TCN对各个本征模态分量的预测结果,重构得到原始序列的预测结果。实例分析表明,该预测方法的均方根误差、平均绝对误差、最大误差分别为1.01μL/L、1.53μL/L、5.54μL/L,相较于未采用CEEMDAN算法时分别减小了53.47%、41.18%、13.36%;在使用CEEMDAN的情况下,对比常用的递归神经网络,3种误差均最小。且对比现有油中溶解气体预测方法,文中提出的油中溶解气体预测方法具有更高的预测精度,可以为制定状态检修策略提供更有效的支撑。 展开更多
关键词 油中溶解气体 变压器 自适应噪声完备集合经验模态分解(ceemdan) 时间卷积网络(TCN) 时间序列预测 状态检修
下载PDF
AOA-CEEMDAN和融合特征在齿轮箱故障诊断中的应用
11
作者 马卫东 刘子全 +1 位作者 姚楠 朱雪琼 《机电工程》 CAS 北大核心 2024年第5期817-826,共10页
自适应噪声完备集成经验模态分解(CEEMDAN)的参数由于是人为设置的,从而会导致其信号的分解不彻底。针对这一问题,提出了一种基于算术优化算法(AOA)优化CEEMDAN、融合特征和随机森林(RF)的齿轮箱故障诊断方法。首先,采用AOA算法对CEEMDA... 自适应噪声完备集成经验模态分解(CEEMDAN)的参数由于是人为设置的,从而会导致其信号的分解不彻底。针对这一问题,提出了一种基于算术优化算法(AOA)优化CEEMDAN、融合特征和随机森林(RF)的齿轮箱故障诊断方法。首先,采用AOA算法对CEEMDAN方法的关键参数进行自适应选取,并采用优化后的CEEMDAN方法对齿轮箱振动信号进行了分解,生成若干个本征模态函数(IMF);随后,利用相关系数准则选择了前4阶IMF分量作为故障敏感分量;接着,利用由注意熵和散度熵组成的融合特征提取方法挖掘了故障敏感分量的故障特征,得到了故障敏感特征样本;最后,将表征齿轮箱故障特性的故障特征输入至RF多故障分类器中,建立了故障分类模型,完成了齿轮箱的故障识别;利用QPZZ-Ⅱ型齿轮箱数据集进行了实验,并将其结果与采用其他方法所得结果进行了对比。研究结果表明:相较于原始CEEMDAN,优化后的CEEMDAN能够更加准确地分解非线性齿轮箱振动信号,故障识别准确率提高了4%;相较于单一的故障特征,融合特征能够更加准确地表征齿轮箱的故障状态,故障识别准确率分别提高了3.2%和8%。基于AOA-CEEMDAN和融合特征提取以及RF分类器的故障诊断方法为齿轮箱的故障特征提取和故障诊断提供一种可行的思路和方案。 展开更多
关键词 齿轮箱 本征模态函数 算术优化算法 自适应噪声完备集成经验模态分解 随机森林
下载PDF
基于CEEMDAN和双重峭度准则的电动机轴承故障特征频率估计方法
12
作者 解春维 申伟霖 余美仪 《机电工程技术》 2024年第2期75-79,共5页
振动传感器采集的轴承故障信号极易被强噪声污染,导致故障特征频率估计精度恶化。针对该问题,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和双峭度准则的轴承故障特征频率高精度估计方法。使用CEEMDAN完成振动信号分解之后,... 振动传感器采集的轴承故障信号极易被强噪声污染,导致故障特征频率估计精度恶化。针对该问题,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和双峭度准则的轴承故障特征频率高精度估计方法。使用CEEMDAN完成振动信号分解之后,从众多的备选模态中挑选出合适成分重构故障特征信号极具挑战。对信号分解获得的模态分量进行迷向圆变换(标准白化处理)后,噪声对应的模态分量的分布更接近于正态分布。借助该信息,引入双重峭度准则,第一重峭度判定是在原始模态分量中筛选出疑似的故障信号,第二重峭度判定是借助迷向圆变换剔除掉噪声成分,然后再使用这两重判定的交集模态完成对轴承故障特征信号的重构。在此基础上,采用复包络法和FFT变换获取信号的包络谱,然后使用三线谱校正法更为精准地估计轴承故障特征频率。仿真实验和实测外圈、内圈故障数据表明,与一些现有方法相比,所提方法具有信号筛选方法简便、估计精度高等优势。 展开更多
关键词 自适应噪声完备集合经验模态分解 轴承故障检测 峭度 故障诊断
下载PDF
基于CEEMDAN多尺度排列熵和SO-RELM的高压隔膜泵单向阀故障诊断 被引量:13
13
作者 李瑞 范玉刚 《振动与冲击》 EI CSCD 北大核心 2023年第5期127-135,共9页
高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研... 高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研究。提取振动信号多尺度排列熵特征,用于建立结构优化正则化极限学习机(structure optimization regularized extreme learning machine, SO-RELM)故障诊断模型,模型利用K-means优化RELM结构,提高模型识别精确度及稳定性。首先采用自适应噪声完备经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)将高压隔膜泵单向阀振动信号自适应分解为多个固有模态分量(intrinsic mode function, IMF),以相关系数为指标,优选包含故障特征信息丰富的分量;然后,计算IMFs的多尺度排列熵值,提取信号的非线性动力学特征;最后,基于多尺度排列熵,建立基于SO-RELM的故障诊断模型。试验结果表明,CEEMDAN多尺度排列熵能够准确表征高压隔膜泵单向阀运行状态的非线性动力学特征,基于CEEMDAN多尺度排列熵建立的SO-RELM故障模型,能够有效识别高压隔膜泵单向阀工况类型,准确率达98.89%。 展开更多
关键词 自适应噪声完备经验模态分解 排列熵 结构优化正则化极限学习机 故障诊断
下载PDF
基于CEEMDAN和小波熵的心音信号去噪算法研究 被引量:4
14
作者 刘倩 徐彦 +1 位作者 梁春燕 袁玉英 《计算机仿真》 北大核心 2023年第2期321-325,419,共6页
针对传统心音去噪算法可能丢失部分重要心音信息问题,提出了一种自适应噪声完备经验模态分解(CEEMDAN)和小波熵结合的心音信号去噪算法。算法通过CEEMDAN将心音信号自适应分解成多个本征模态函数(IMFs),基于各阶本征模态的能量分析判别... 针对传统心音去噪算法可能丢失部分重要心音信息问题,提出了一种自适应噪声完备经验模态分解(CEEMDAN)和小波熵结合的心音信号去噪算法。算法通过CEEMDAN将心音信号自适应分解成多个本征模态函数(IMFs),基于各阶本征模态的能量分析判别信噪分界点,对含噪IMF分量采用小波熵自适应阈值去噪后,与信号IMF分量重构,得到去噪后的心音信号。仿真结果显示,在不同信噪比条件下,上述算法均能明显提高心音信号的信噪比,降低均方根误差,优于其它传统去噪算法,具有良好地抑制噪声能力。 展开更多
关键词 自适应噪声完备经验模态分解 小波熵 心音信号 噪声
下载PDF
基于改进CEEMDAN和t-SNE的故障特征提取方法 被引量:1
15
作者 郑惠萍 王卓 +3 位作者 彭立强 秦志英 赵月静 裴春兴 《机床与液压》 北大核心 2023年第19期216-222,共7页
针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传... 针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传统CEEMDAN对非平稳信号的分解精度;利用改进后的CEEMDAN对原始信号分解并通过相关系数筛选出有效固有模态分量(IMF),提取有效IMF分量的时频特征、奇异值和能量值构建高维混合域特征集;最后,通过t-SNE算法挖掘高维混合域特征信息得到低维敏感特征,并将其输入到支持向量机中进行分类,以分类准确率作为特征提取效果评价指标。在齿轮箱故障模拟实验台进行实验验证,结果表明该方法能够准确地提取故障特征,为故障特征提取提供新思路。 展开更多
关键词 Hermite插值法 自适应噪声完备集合经验模态分解 t-分布随机邻域嵌入 故障特征提取
下载PDF
基于CEEMDAN-LZC和SOA-ELM的管道信号识别
16
作者 张勇 韦焱文 +3 位作者 王明吉 路敬祎 邢鹏飞 周兴达 《吉林大学学报(信息科学版)》 CAS 2023年第2期193-201,共9页
针对管道信号特征提取困难,从而影响分类精度的问题,提出了一种将信号处理和智能算法相结合的管道信号检测方法。首先,利用CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)对信号分解,对分解获得的固有模... 针对管道信号特征提取困难,从而影响分类精度的问题,提出了一种将信号处理和智能算法相结合的管道信号检测方法。首先,利用CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)对信号分解,对分解获得的固有模态(IMFs:Intrinsic Mode Functions)使用相关系数法获取有效的模态分量并进行信号重构;其次,计算重构信号的Lempel-Ziv复杂度和裕度作为特征参数;最后,将获取的特征参数输入到海鸥优化算法(SOA:Seagull Optimization Algorithm)优化后的极限学习机(ELM:Extreme Learning Machine)进行分类,并用实验室数据进行验证。实验结果表明,与常规极限学习机(ELM)和遗传算法优化后的极限学习机GA-ELM(Extreme Learning Machine Optimized by Genetic Algorithm)相比,SOA-ELM模型能有效的识别管道信号类型,且具有较高的识别率和较快的诊断速度。 展开更多
关键词 自适应噪声完备集合经验模态分解 Lempel-Ziv复杂度 海鸥优化算法 极限学习机 管道信号
下载PDF
基于CEEMDAN-小波包自适应阈值混凝土声发射信号降噪研究 被引量:8
17
作者 杨智中 林军志 +2 位作者 汪魁 程梓益 刘攀 《振动与冲击》 EI CSCD 北大核心 2023年第3期139-149,共11页
为了得到更加纯净的混凝土声发射(acoustic emission, AE)信号来更准确地监测混凝土结构破裂过程,提出了一种完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition, CEEMDAN)与小波包自适应阈值联合方法对... 为了得到更加纯净的混凝土声发射(acoustic emission, AE)信号来更准确地监测混凝土结构破裂过程,提出了一种完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition, CEEMDAN)与小波包自适应阈值联合方法对循环荷载作用下的混凝土声发射信号进行降噪处理,运用信噪比和快速傅里叶变化(fast Fourier transform, FFT)分析来验证所用方法的可行性。实验结果表明:结合CEEMDAN-小波包自适应阈值对混凝土声发射信号进行降噪的效果较好,能有效地保留混凝土声发射信号特征信息,对混凝土声发射信号降噪提供新的思路,为后续利用声发射信号分析混凝土结构内部微裂纹扩展及演化特征奠定基础。 展开更多
关键词 循环荷载 混凝土声发射(AE)信号 完全自适应噪声集合经验模态分解(ceemdan) 小波包自适应阈值降噪 快速傅里叶变换(FFT)
下载PDF
基于CEEMDAN-IPSO-LSTM的城市轨道交通短时客流预测方法研究 被引量:3
18
作者 曾璐 李紫诺 +1 位作者 杨杰 许心越 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第9期3273-3286,共14页
消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函... 消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函数分量和剩余分量后,利用引入自适应策略的改进粒子群算法(IPSO)动态求解长短期记忆神经网络(LSTM)超参数的最优值,构建CEEMDAN-IPSO-LSTM组合模型预测城市轨道交通短时客流量。以广州地铁杨箕站自动售检票系统采集的历史进(出)站客流数据为例进行实验,研究结果表明:IPSO算法较PSO算法在基准测试函数Sphere,Sum Squars,Sum of Different Power,Rosenbrock,Rastigrin,Ackley,Griewank和Penalized上的最小值、最大值、平均值和标准差均更接近最佳优化值,CEEMDAN-IPSO-LSTM模型较LSTM模型、CEEMDAN-LSTM模型、CEEMDAN-PSO-LSTM模型的全月全日进(出)站的预测误差评价指标SD,RMSE,MAE和MAPE分别降低了12~40人次(13~35人次)、13~44人次(12~35人次)、6~37人次(12~31人次)和5.08%~46.89%(6.5%~35.1%),R和R2分别提高了0.07%~2.32%(0.86%~3.63%)和0.13%~2.19%(0.67%~1.67%),同时在工作日不同时段和非工作日全日的预测性能均达到最优效果。IPSO算法的收敛速度和参数寻优精度均优于PSO算法,且CEEMDAN-IPSO-LSTM模型可应用于城市轨道交通短时客流量的精确预测,同时可为设计规划线网路线、缓解交通压力、提高乘客出行服务质量等提供基础数据支撑。 展开更多
关键词 城市轨道交通 短时客流预测 自适应噪声完全集成经验模式分解算法 改进粒子群算法 长短期记忆神经网络 组合模型 ceemdan-IPSO-LSTM
下载PDF
基于CEEMDAN-TCN模型的河南省月降水量预测 被引量:2
19
作者 王硕 陈中举 +1 位作者 许浩然 黄小龙 《节水灌溉》 北大核心 2023年第8期26-33,共8页
针对水文时间序列非线性难以预测的特性,为进一步提高降水量的预测精度,提出一种基于自适应噪声的完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络(Temporal Convolution... 针对水文时间序列非线性难以预测的特性,为进一步提高降水量的预测精度,提出一种基于自适应噪声的完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络(Temporal Convolutional Network,TCN)的耦合模型,使用河南省1960年1月-2000年7月的月降水量数据,对2000年8月-2017年12月降水量进行预测。模型使用CEEMDAN将原始不平稳的降水量序列分解为一组相对平稳的子序列分量,再利用TCN对各子序列分别进行预测,将各子序列分量的预测结果叠加得到最终结果。为验证模型的有效性,将该模型与LSTM、TCN、CEEMDAN-LSTM模型进行对比。结果表明,CEEMDAN-TCN模型预测精度最高,相较于3种对比模型RMSE分别减少了42.82%、35.65%、18.12%,MAE分别减少了37.75%、27.53%、19.39%。在空间分布上,使用普通克里金插值法得到的CEEMDAN-TCN预测值与实际值的空间分布接近。综上,CEEMDAN方法可以有效降低月降水量数据的不平稳性,耦合CEEMDAN方法的组合模型较单一模型预测精度更高;CEEMDAN-TCN模型相较3种对比模型的预测精度均有不同程度提升,该方法将CEEMDAN信号分解技术、深度学习模型与降水量预测领域相结合,有效地提升了月降水量预测精度。 展开更多
关键词 降水量预测 模型精度比较 ceemdan-TCN 自适应噪声的完备经验模态分解 时间卷积网络 河南省 克里金插值法
下载PDF
基于CEEMDAN-WOA-SVR的高铁沿线超短期风速预测方法 被引量:1
20
作者 王瑞 马祯 李磊 《中国铁道科学》 EI CAS CSCD 北大核心 2023年第6期80-86,共7页
为提升高铁沿线风速预测精度以增强铁路对强风监测预警能力,提出基于自适应噪声完备经验模态分解和鲸鱼算法优化支持向量回归(CEEMDAN-WOA-SVR)的铁路沿线风速预测方法。首先,考虑风速具有非平稳性特点和非线性趋势,基于自适应噪声完备... 为提升高铁沿线风速预测精度以增强铁路对强风监测预警能力,提出基于自适应噪声完备经验模态分解和鲸鱼算法优化支持向量回归(CEEMDAN-WOA-SVR)的铁路沿线风速预测方法。首先,考虑风速具有非平稳性特点和非线性趋势,基于自适应噪声完备经验模态(CEEMDAN)对风速信号进行分解,提取不同频率模态分量;其次,采用鲸鱼优化算法(WOA)优化支持向量回归(SVR)模型的惩罚因子和核参数,并构建风速预测模型;最后,以我国典型高铁沿线某测风点实测风速为例开展预测,验证风速预测方法的有效性。结果表明:所提方法对高铁沿线3 min风速预测精度较4个基准模型提升了25%,验证了它的准确性;针对5 min平均风速的预测精度提升了20%,说明它还具有较好的泛化性。该方法是对高铁沿线风速预测的有效探索,可为高铁沿线风速监测预警提供借鉴。 展开更多
关键词 高铁 风速预测 自适应噪声完全集合经验模态分解 鲸鱼优化算法 支持向量回归
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部