The flexibility of organic photovoltaics(OPVs)has attracted worldwide attention in recent years.To realize the bending-stability of OPVs,it is necessary to put forward the bending-stability of interfacial layer.A nove...The flexibility of organic photovoltaics(OPVs)has attracted worldwide attention in recent years.To realize the bending-stability of OPVs,it is necessary to put forward the bending-stability of interfacial layer.A novel bendable composite is explored and successfully applied as an electron transport layer(ETL)for fully-flexible OPVs.We incorporated poly(vinylpyrrolidone)(PVP)into conjugated electrolytes(CPE)to composite a bendable ETL for high-performance OPVs devices.Fortunately,the devices based on PVP-modified CPE exhibited better device performances and more excellent mechanical properties of bendability.The fullerene-free OPVs based on PM6:IT-4 F with CPE@PVP as ETLs yield the best power conversion efficiency(PCE)of 13.42%.Moreover,a satisfying efficiency of 12.59%has been obtained for the fully-flexible OPVs.As far as we know,this is one of the highest PCE for fully-flexible OPV based PM6:IT-4 F system.More importantly,the flexible OPVs devices can retain more than 80%of its initial efficiency after 5000 bending cycles.Furthermore,among various curvature radii,the mechanical properties of the device based on CPE@PVP are superior to those of the device based on bare CPE as ETL.These findings indicate that the functional flexibility of CPE as a cathode interfacial layer is an effective strategy to fabricate high-performance flexible devices in the near future.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.51833004,22005131,51973032,21905043 and U20A20128)。
文摘The flexibility of organic photovoltaics(OPVs)has attracted worldwide attention in recent years.To realize the bending-stability of OPVs,it is necessary to put forward the bending-stability of interfacial layer.A novel bendable composite is explored and successfully applied as an electron transport layer(ETL)for fully-flexible OPVs.We incorporated poly(vinylpyrrolidone)(PVP)into conjugated electrolytes(CPE)to composite a bendable ETL for high-performance OPVs devices.Fortunately,the devices based on PVP-modified CPE exhibited better device performances and more excellent mechanical properties of bendability.The fullerene-free OPVs based on PM6:IT-4 F with CPE@PVP as ETLs yield the best power conversion efficiency(PCE)of 13.42%.Moreover,a satisfying efficiency of 12.59%has been obtained for the fully-flexible OPVs.As far as we know,this is one of the highest PCE for fully-flexible OPV based PM6:IT-4 F system.More importantly,the flexible OPVs devices can retain more than 80%of its initial efficiency after 5000 bending cycles.Furthermore,among various curvature radii,the mechanical properties of the device based on CPE@PVP are superior to those of the device based on bare CPE as ETL.These findings indicate that the functional flexibility of CPE as a cathode interfacial layer is an effective strategy to fabricate high-performance flexible devices in the near future.