In order to deal with the limitations during the register transfer level verification, a new functional verification method based on the random testing for the system-level of system-on-chip is proposed.The validity o...In order to deal with the limitations during the register transfer level verification, a new functional verification method based on the random testing for the system-level of system-on-chip is proposed.The validity of this method is proven theoretically.Specifically, testcases are generated according to many approaches of randomization.Moreover, the testbench for the system-level verification according to the proposed method is designed by using advanced modeling language.Therefore, under the circumstances that the testbench generates testcases quickly, the hardware/software co-simulation and co-verification can be implemented and the hardware/software partitioning planning can be evaluated easily.The comparison method is put to use in the evaluation approach of the testing validity.The evaluation result indicates that the efficiency of the partition testing is better than that of the random testing only when one or more subdomains are covered over with the area of errors, although the efficiency of the random testing is generally better than that of the partition testing.The experimental result indicates that this method has a good performance in the functional coverage and the cost of testing and can discover the functional errors as soon as possible.展开更多
电源管理芯片在超过可承受温度范围工作时会对自身造成不同程度的损坏,过温保护电路对提高该类芯片的可靠性和鲁棒性具有重要作用。文中设计了一种具有温度过高关断和温度过低提醒等双重功能的高精度过温保护电路。利用正、负温度系数...电源管理芯片在超过可承受温度范围工作时会对自身造成不同程度的损坏,过温保护电路对提高该类芯片的可靠性和鲁棒性具有重要作用。文中设计了一种具有温度过高关断和温度过低提醒等双重功能的高精度过温保护电路。利用正、负温度系数电压对芯片温度进行实时检测,并与带隙基准电路输出端的不同基准电压分别进行比较得到4个逻辑翻转点,进而通过高精度比较器电路和迟滞逻辑电路处理后,输出迟滞逻辑信号来控制芯片的工作状态或进行温度过低提醒。基于0.18μm BCD(Bipolar-Complementary Metal Oxied Semiconductor-Double diffused Metal Oxide Semiconductor)工艺设计并完成了相关仿真验证,仿真结果表明,在电源电压范围为3.0~5.5 V时,该电路输出端的迟滞逻辑翻转信号对应的温度阈值最大偏移量在0.3℃以内,具备较高的精度,可广泛集成于各种需要过温保护功能的电源管理芯片。展开更多
Generalized Bent function and generalized Bent function sequences are introduced in this paper.The main performance or these sequences used as SW/SFH(Short Wave/Slow Frequency Hopping) code are studied. And the hardwa...Generalized Bent function and generalized Bent function sequences are introduced in this paper.The main performance or these sequences used as SW/SFH(Short Wave/Slow Frequency Hopping) code are studied. And the hardware circuit and the soflware program flow chart of the SW/SFH PN code generator are also given,which is based on generalized Bent function sequence generator by using a single chip mlcrocomputer.展开更多
基金supported by the National High Technology Research and Development Program of China (863 Program) (2002AA1Z1490)Specialized Research Fund for the Doctoral Program of Higher Education (20040486049)the University Cooperative Research Fund of Huawei Technology Co., Ltd
文摘In order to deal with the limitations during the register transfer level verification, a new functional verification method based on the random testing for the system-level of system-on-chip is proposed.The validity of this method is proven theoretically.Specifically, testcases are generated according to many approaches of randomization.Moreover, the testbench for the system-level verification according to the proposed method is designed by using advanced modeling language.Therefore, under the circumstances that the testbench generates testcases quickly, the hardware/software co-simulation and co-verification can be implemented and the hardware/software partitioning planning can be evaluated easily.The comparison method is put to use in the evaluation approach of the testing validity.The evaluation result indicates that the efficiency of the partition testing is better than that of the random testing only when one or more subdomains are covered over with the area of errors, although the efficiency of the random testing is generally better than that of the partition testing.The experimental result indicates that this method has a good performance in the functional coverage and the cost of testing and can discover the functional errors as soon as possible.
文摘电源管理芯片在超过可承受温度范围工作时会对自身造成不同程度的损坏,过温保护电路对提高该类芯片的可靠性和鲁棒性具有重要作用。文中设计了一种具有温度过高关断和温度过低提醒等双重功能的高精度过温保护电路。利用正、负温度系数电压对芯片温度进行实时检测,并与带隙基准电路输出端的不同基准电压分别进行比较得到4个逻辑翻转点,进而通过高精度比较器电路和迟滞逻辑电路处理后,输出迟滞逻辑信号来控制芯片的工作状态或进行温度过低提醒。基于0.18μm BCD(Bipolar-Complementary Metal Oxied Semiconductor-Double diffused Metal Oxide Semiconductor)工艺设计并完成了相关仿真验证,仿真结果表明,在电源电压范围为3.0~5.5 V时,该电路输出端的迟滞逻辑翻转信号对应的温度阈值最大偏移量在0.3℃以内,具备较高的精度,可广泛集成于各种需要过温保护功能的电源管理芯片。
文摘Generalized Bent function and generalized Bent function sequences are introduced in this paper.The main performance or these sequences used as SW/SFH(Short Wave/Slow Frequency Hopping) code are studied. And the hardware circuit and the soflware program flow chart of the SW/SFH PN code generator are also given,which is based on generalized Bent function sequence generator by using a single chip mlcrocomputer.