The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are ...The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.展开更多
By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(...By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].展开更多
For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain li...For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.展开更多
In this paper. four sufficiency theorems of existence of periodic solutions for aclass of retarded functional differential equations are given. The result of thesetheorems is better than the well-known Yoshizawa’s p...In this paper. four sufficiency theorems of existence of periodic solutions for aclass of retarded functional differential equations are given. The result of thesetheorems is better than the well-known Yoshizawa’s periodic solution theorem. Anexample of application is given at the end.展开更多
The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1...The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1 cixi(t) +g(x(t-τ) ) =p(t) =p(t+2π) is obtained.The approach is based on the abstract continuation theorem from Mawhin and the a- priori estimate of periodic solutions展开更多
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann the...In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.展开更多
Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of...This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson.展开更多
In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Legg...In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Leggett-Williams fixed point theorem.展开更多
The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-s...The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.展开更多
The problem of periodic solutions for a kind of kth-order linear neutral functional differential equation is studied. By using the theory of Fourier expansions, a sufficient and necessary condition to guarantee the ex...The problem of periodic solutions for a kind of kth-order linear neutral functional differential equation is studied. By using the theory of Fourier expansions, a sufficient and necessary condition to guarantee the existence and uniqueness of periodic solution is obtained. Further, by applying this result and Schauder's fixed point principle, a kind of kth-order nonlinear neutral functional differential equation is investigated, and some new results on existence of the periodic solutions are given as well. These results improve and extend some known results in recent literature.展开更多
In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the f...In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the form:x(n+ 1) =A(n)x(n) +λh(n)f(x(n- τ(n))), n∈ Z.展开更多
nonrecurrence theorem on the existence of periodic solutions for functional differential equations is proved by employing the topological method, and some applications are given.
In this paper, the well known implicit function theorem was applied to study existence and uniqueness of periodic solution of Duffing-type equation. Un-der appropriate conditions around the origin, a unique periodic s...In this paper, the well known implicit function theorem was applied to study existence and uniqueness of periodic solution of Duffing-type equation. Un-der appropriate conditions around the origin, a unique periodic solution was obtained.展开更多
This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems ...This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is pres...This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is presented and the previous results are extended.展开更多
The extended homoclinic test function method is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. In this paper, with the help of this approach, we obtain new exact solutio...The extended homoclinic test function method is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. In this paper, with the help of this approach, we obtain new exact solutions (including kinky periodic solitary-wave solutions, periodic soliton solutions, and cross kink-wave solutions) for the new (2+1)-dimensional KdV equation. These results enrich the variety of the dynamics of higher-dimensionai nonlinear wave field.展开更多
Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutio...Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.展开更多
文摘The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.
基金National Natural Science Foundation of China( 198710 0 5 )
文摘By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].
文摘For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.
文摘In this paper. four sufficiency theorems of existence of periodic solutions for aclass of retarded functional differential equations are given. The result of thesetheorems is better than the well-known Yoshizawa’s periodic solution theorem. Anexample of application is given at the end.
基金Supported by the National Natural Science Foundation of China(1 9971 0 2 6 )
文摘The sufficient condition for the existence of2 π- periodic solutions of the following third- order functional differential equations with variable coefficients a(t) x (t) +bx″2 k- 1(t) +cx′2 k- 1(t) + 2 k- 1 i=1 cixi(t) +g(x(t-τ) ) =p(t) =p(t+2π) is obtained.The approach is based on the abstract continuation theorem from Mawhin and the a- priori estimate of periodic solutions
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771196 and 10831003)the Innovation Project of Zhejiang Province of China(Grant No.T200905)
文摘In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
基金Supported by the Natural Science Foundation of Hunan Province(12JJ6006) Supported by the Science Foundation of Department of Science and Technology of Hunan Province(2012FJ3107)
文摘This paper is concerned with the nonlinear neutral functional difference equations△x(n) =-a(n)x(n) +h(n)f(n,x(n-T(n)),△x(n-δ(n))),where a,h and f are nonnegative sequences.Sufficient conditions for the existence of at least three positive T-periodic solutions are established by using a fixed point theorem due to Avery and Peterson.
文摘In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Leggett-Williams fixed point theorem.
文摘The aim of this work is to study the existence of a periodic solution for some neutral partial functional differential equations. Our approach is based on the R-boundedness of linear operators Lp-multipliers and UMD-spaces.
文摘The problem of periodic solutions for a kind of kth-order linear neutral functional differential equation is studied. By using the theory of Fourier expansions, a sufficient and necessary condition to guarantee the existence and uniqueness of periodic solution is obtained. Further, by applying this result and Schauder's fixed point principle, a kind of kth-order nonlinear neutral functional differential equation is investigated, and some new results on existence of the periodic solutions are given as well. These results improve and extend some known results in recent literature.
基金Project(10471153) supported by the National Natural Science Foundation of China project supported by the Natural Science Foundation of Central South University
文摘In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the higher-dimensional functional difference equations of the form:x(n+ 1) =A(n)x(n) +λh(n)f(x(n- τ(n))), n∈ Z.
文摘nonrecurrence theorem on the existence of periodic solutions for functional differential equations is proved by employing the topological method, and some applications are given.
文摘In this paper, the well known implicit function theorem was applied to study existence and uniqueness of periodic solution of Duffing-type equation. Un-der appropriate conditions around the origin, a unique periodic solution was obtained.
基金The research supported by the National Natural Science Foundation of China.
文摘This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
基金Supported by the National Natural Science Foundation of China (10571050 10871062)Hunan Provincial Innovation Foundation For Postgraduate
文摘This paper is concerned with the existence and approximation of solutions for a class of first order impulsive functional differential equations with periodic boundary value conditions. A new comparison result is presented and the previous results are extended.
基金Supported by the Natural Science Foundation of China under Grant Nos.10361007,10661002Yunnan Natural Science Foundation under Grant No.2006A0082M
文摘The extended homoclinic test function method is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. In this paper, with the help of this approach, we obtain new exact solutions (including kinky periodic solitary-wave solutions, periodic soliton solutions, and cross kink-wave solutions) for the new (2+1)-dimensional KdV equation. These results enrich the variety of the dynamics of higher-dimensionai nonlinear wave field.
基金The project supported by National Natural Science Foundation of China under Grant No.10771196the Natural Science Foundation of Zhejiang Province under Grant No.Y605044
文摘Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.