A thorough analysis on its natural environment as well as social economic status of the hilly-gullied loess region is presented. A small watershed, the dominant landscape unit of the region, has been singled out for f...A thorough analysis on its natural environment as well as social economic status of the hilly-gullied loess region is presented. A small watershed, the dominant landscape unit of the region, has been singled out for further and specific study on landscape pattern and function, its social and economic distinctions. The authors proposed several principles based on its eco-economic background study, which includes water balance and efficient use principle, co-development of grass and agro-forestry principle, location optimization principle. Integrated with detailed analysis of a small watershed, an eco-productive paradigm for the loess land's development based on a small watershed scale was worked out. It consists of circle pattern with villages at core for high efficient agriculture production, hierarchical pattern along the slope for eco-economic development, point-axis pattern for commodity production and circulation in small watersheds and core-margin pattern for exchanges among watersheds.展开更多
This paper deals with the goals and visions of a consortium in Japan, named Consortium for Business Object Promotion (CBOP), discussing its background, activities, and basic technical approaches to share and exchangin...This paper deals with the goals and visions of a consortium in Japan, named Consortium for Business Object Promotion (CBOP), discussing its background, activities, and basic technical approaches to share and exchanging various types of Business Objects. Especially, Object Pattern Technologies used in CBOP should be discussed.展开更多
CRISPR/Cas9-mediated genome engineering technologies are now widely applied in various organisms,including mouse and human cells(Cong et al.,2013;Mali et al.,2013;Yang et al.,2013;Hsu et al.,2014).The most widely us...CRISPR/Cas9-mediated genome engineering technologies are now widely applied in various organisms,including mouse and human cells(Cong et al.,2013;Mali et al.,2013;Yang et al.,2013;Hsu et al.,2014).The most widely used customized CRISPR/Cas9(Sp Cas9)is derived from Streptococcus pyogenes(Cong et al.,2013).展开更多
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized...Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.展开更多
Change in Arctic sea ice extent is one of the indicators of global climate changes. Spatio-temporal change and change patterns can be identified using various methods to facilitate human understanding global climate c...Change in Arctic sea ice extent is one of the indicators of global climate changes. Spatio-temporal change and change patterns can be identified using various methods to facilitate human understanding global climate changes. Three empirical orthogonal function(EOF) techniques are discussed and applied to decades of sea-ice concentration(SIC) dataset in Arctic area for identifying independent patterns. It was found that: 1) discrepancies exist in magnitude and scope for each EOF pattern, however, the first two leading EOFs of variability possess high similarities in structure and shape; 2) Even though there are somewhat differences in amplitude of each PC mode, the first two leading PC modes maintain consistent in overall trend and periodicity; 3) There are significant discrepancies and inconsistencies in the third and fourth leading EOF and PC modes. The accuracies of three techniques are further validated in representing the physical phenomena of SIC anomaly patterns.展开更多
Patterned covalent functionalization of graphitic surfaces(GSs)is of interest in the development of devices and nanocomposite materials.In contrast to the strategies using external templates or control for realizing p...Patterned covalent functionalization of graphitic surfaces(GSs)is of interest in the development of devices and nanocomposite materials.In contrast to the strategies using external templates or control for realizing patterned covalent functionalization of GSs,here,we present a self-templated strategy by exploiting the synergistic effects of chemical and physical functionalization of GSs.Therefore,a diazonium salt is reduced by potassium iodide(KI)in dimethyl sulfoxide while the solution is in contact with a GS,resulting in its spatially heterogeneous,that is,chemical and physical,functionalization.This heterogeneous functionalization leads to a quasiperiodic pattern of striped corrals with three equivalent orientations in the covalent layer.The formation of the striped corrals is ascribed to physisorbed domains formed by self-assembled N_(2),which is produced in situ during the reduction of the diazonium salt,preventing the covalent functionalization.展开更多
Background: Electroconvulsive therapy (ECT) can alleviate the symptoms of treatment-resistant depression (TRD). Functional network connectivity (FNC) is a newly developed method to investigate the brain's func...Background: Electroconvulsive therapy (ECT) can alleviate the symptoms of treatment-resistant depression (TRD). Functional network connectivity (FNC) is a newly developed method to investigate the brain's functional connectivity patterns. The first aim of this study was to investigate FNC alterations between TRD patients and healthy controls. The second aim was to explore the relationship between the ECT treatment response and pre-ECT treatment FNC alterations in individual TRD patients. Methods: This study included 82 TRD patients and 41 controls. Patients were screened at baseline and after 2 weeks of treatment with a combination of ECT and antidepressants. Group information guided-independent component analysis (G1G-ICA) was used to compute subject-specific functional networks (FNs). Grassmann maniibld and step-wise forward component selection using support vector machines were adopted to perform the FNC measure and extract the functional networks' connectivity patterns (FCP). Pearson's correlation analysis was used to calculate the correlations between the FCP and ECT response. Results: A total of 82 TRD patients in the ECT group were successfully treated. On an average, 8.50 ~ 2.00 ECT sessions were conducted. After ECT treatment, only 42 TRD patients had an improved response to ECT (the Hamilton scores reduction rate was more than 50%), response rate 51%. 8 FNs (anterior and posterior default mode network, bilateral frontoparietal network, audio network, visual network, dorsal attention network, and sensorimotor network) were obtained using GIG-ICA. We did not found that FCPs were significantly different between TRD patients and healthy controls. Moreover, the baseline FCP was unrelated to the ECT treatment response. Conclusions: The FNC was not significantly different between the TRD patients and healthy controls, and the baseline FCP was unrelated to the ECT treatment response. These findings will necessitate that we modify the experimental scheme to explore the mechanisms underlying ECT's effects on depression and explore the specific predictors of the effects of ECT based on the pre-ECT treatment magnetic resonance imaging.展开更多
Vegetation biomass is an important component of terrestrial ecosystem carbon stocks. Grasslands are one of the most widespread biomes worldwideplaying an important role in global carbon cycling. Thereforestudying spat...Vegetation biomass is an important component of terrestrial ecosystem carbon stocks. Grasslands are one of the most widespread biomes worldwideplaying an important role in global carbon cycling. Thereforestudying spatial patterns of biomass and their correlations to environment in grasslands is fundamental to quantifying terrestrial carbon budgets. The Eurasian steppean important part of global grasslandsis the largest and relatively well preserved grassland in the world. In this studywe analyzed the spatial pattern of aboveground biomass(AGB)and correlations of AGB to its environment in the Eurasian steppe by meta-analysis. AGB data used in this study were derived from the harvesting method and were obtained from three data sources(literatureglobal NPP database at the Oak Ridge National Laboratory Distributed Active Archive Center(ORNL)some data provided by other researchers). Our results demonstrated that:(1) as for the Eurasian steppe overallthe spatial variation in AGB exhibited significant horizontal and vertical zonality. In detailAGB showed an inverted parabola curve with the latitude and with the elevationwhile a parabola curve with the longitude. In additionthe spatial pattern of AGB had marked horizontal zonality in the Black Sea-Kazakhstan steppe subregion and the Mongolian Plateau steppe subregionwhile horizontal and vertical zonality in the Tibetan Plateau alpine steppe subregion.(2) Of the examined environmental variablesthe spatial variation of AGB was related to mean annual precipitation(MAP)mean annual temperature(MAT)mean annual solar radiation(MAR)soil Gravel contentsoil p H and soil organic content(SOC) at the depth of 0–30 cm. NeverthelessMAP dominated spatial patterns of AGB in the Eurasian steppe and its three subregions.(3) A Gaussian function was found between AGB and MAP in the Eurasian steppe overallwhich was primarily determined by unique patterns of grasslands and environment in the Tibetan Plateau. AGB was significantly positively related to MAP in the Black Sea-Kazakhstan steppe subregion(elevation 〈 3000 m)the Mongolian Plateau steppe subregion(elevation 〈 3000 m) and the surface(elevation ≥ 4800 m) of the Tibetan Plateau. Neverthelessthe spatial variation in AGB exhibited a Gaussian function curve with the increasing MAP in the east and southeast margins(elevation 〈 4800 m) of the Tibetan Plateau. This study provided more knowledge of spatial patterns of AGB and their environmental controls in grasslands than previous studies only conducted in local regions like the Inner Mongolian temperate grasslandthe Tibetan Plateau alpine grasslandetc.展开更多
Land consolidation has a profound impact on landscape patterns and ecological functions at various scales through engineering and biological measures. In recent years, China invests more than 100 billion RMB yuan on l...Land consolidation has a profound impact on landscape patterns and ecological functions at various scales through engineering and biological measures. In recent years, China invests more than 100 billion RMB yuan on land consolidation each year. To under- stand how land consolidation affects landscape patterns and ecosystems, we investigated the ecosystem service value and the ecological connectivity in a consolidated area of Da'an city from 2008 to 2014 using a revised ecological connectivity index. The results indicated that land consolidation has certain negative influences on the ecosystem services in this area. The total ecosystem service value will decrease by nearly 30% in the late stage of consolida- tion. This decrease is caused by the loss of ecosystem service of the wetland and grassland, despite a sensible increase of cultivated land. In addition, land consolidation could change the ecological connectivity as well as the land use structure. Up to 85% of the entire area will be in low connectivity in the late stage of consolidation, representing a 6.23% increase in the total coverage compared to pre-consolidation. Finally, the different connectivity landscape and their key areas can be identified by the revised ecological connectivity index effectively. This study is helpful to trace out the relationships between landscape pattern and ecological process, and provides insights for ecological planning and designing of land consolidation in this area. We suggest that more attentions should be paid to improve the quality and eco- system service value per unit area of the landscape, to establish ecological compensation mechanism of wetland losses, and to create the ecological corridors along the least accu- mulated impendence surface in the key areas during land consolidation.展开更多
文摘A thorough analysis on its natural environment as well as social economic status of the hilly-gullied loess region is presented. A small watershed, the dominant landscape unit of the region, has been singled out for further and specific study on landscape pattern and function, its social and economic distinctions. The authors proposed several principles based on its eco-economic background study, which includes water balance and efficient use principle, co-development of grass and agro-forestry principle, location optimization principle. Integrated with detailed analysis of a small watershed, an eco-productive paradigm for the loess land's development based on a small watershed scale was worked out. It consists of circle pattern with villages at core for high efficient agriculture production, hierarchical pattern along the slope for eco-economic development, point-axis pattern for commodity production and circulation in small watersheds and core-margin pattern for exchanges among watersheds.
文摘This paper deals with the goals and visions of a consortium in Japan, named Consortium for Business Object Promotion (CBOP), discussing its background, activities, and basic technical approaches to share and exchanging various types of Business Objects. Especially, Object Pattern Technologies used in CBOP should be discussed.
基金supported by the grants from the Natural Science Foundation of China (No.81201181 to F.G.81473295 and 81670882 to Z.M.S and 81700885 to X.L.G.)+5 种基金Zhejiang Provincial & Ministry of Health research fund for medical sciences (WKJ2013-2-023 to F.G.WKJ-ZJ-1828 to J.Z.Z.and 2016KYA145 to X.L.G.)Science Technology Project of Zhejiang Province (2014C33260 to Z.M.S.and 2017C37176 to F.G.)Eye Hospital at Wenzhou Medical University (YNZD201602 to F.G.)Wenzhou City (Y20160008 to J.Z.Z.)Research Fund for Lin He's Academician Workstation of New Medicine and Clinical Translation (17331209 to C.B.L.)
文摘CRISPR/Cas9-mediated genome engineering technologies are now widely applied in various organisms,including mouse and human cells(Cong et al.,2013;Mali et al.,2013;Yang et al.,2013;Hsu et al.,2014).The most widely used customized CRISPR/Cas9(Sp Cas9)is derived from Streptococcus pyogenes(Cong et al.,2013).
基金supported by the National Natural Science Foundation of China,No.31070758,31271060the Natural Science Foundation of Chongqing in China,No.cstc2013jcyj A10085
文摘Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.
基金Project(41301420)supported by the National Natural Science Foundation of ChinaProject(12JJB005)supported by the Hunan Provincial Natural Science Foundation of China+1 种基金Project(2014VGE03)supported by the Key Lab of Virtual Geographic Environment from Ministry of Education,ChinaProject(LEND2013B04)supported by the NASA Key Laboratory of Land Environment and Disaster Monitoring,USA
文摘Change in Arctic sea ice extent is one of the indicators of global climate changes. Spatio-temporal change and change patterns can be identified using various methods to facilitate human understanding global climate changes. Three empirical orthogonal function(EOF) techniques are discussed and applied to decades of sea-ice concentration(SIC) dataset in Arctic area for identifying independent patterns. It was found that: 1) discrepancies exist in magnitude and scope for each EOF pattern, however, the first two leading EOFs of variability possess high similarities in structure and shape; 2) Even though there are somewhat differences in amplitude of each PC mode, the first two leading PC modes maintain consistent in overall trend and periodicity; 3) There are significant discrepancies and inconsistencies in the third and fourth leading EOF and PC modes. The accuracies of three techniques are further validated in representing the physical phenomena of SIC anomaly patterns.
基金Research Foundation-Flanders (FWO),Grant/Award Numbers:G081518N,G082218NKU Leuven-Internal Funds,Grant/Award Number:C14/19/079+2 种基金FWO under EOS,Grant/Award Number:30489208the China Scholarship Council,Grant/Award Number:CSC 201706890021Marie Skłodowska-Curie Individual Fellowship,Grant/Award Number:789865-EnSurf。
文摘Patterned covalent functionalization of graphitic surfaces(GSs)is of interest in the development of devices and nanocomposite materials.In contrast to the strategies using external templates or control for realizing patterned covalent functionalization of GSs,here,we present a self-templated strategy by exploiting the synergistic effects of chemical and physical functionalization of GSs.Therefore,a diazonium salt is reduced by potassium iodide(KI)in dimethyl sulfoxide while the solution is in contact with a GS,resulting in its spatially heterogeneous,that is,chemical and physical,functionalization.This heterogeneous functionalization leads to a quasiperiodic pattern of striped corrals with three equivalent orientations in the covalent layer.The formation of the striped corrals is ascribed to physisorbed domains formed by self-assembled N_(2),which is produced in situ during the reduction of the diazonium salt,preventing the covalent functionalization.
文摘Background: Electroconvulsive therapy (ECT) can alleviate the symptoms of treatment-resistant depression (TRD). Functional network connectivity (FNC) is a newly developed method to investigate the brain's functional connectivity patterns. The first aim of this study was to investigate FNC alterations between TRD patients and healthy controls. The second aim was to explore the relationship between the ECT treatment response and pre-ECT treatment FNC alterations in individual TRD patients. Methods: This study included 82 TRD patients and 41 controls. Patients were screened at baseline and after 2 weeks of treatment with a combination of ECT and antidepressants. Group information guided-independent component analysis (G1G-ICA) was used to compute subject-specific functional networks (FNs). Grassmann maniibld and step-wise forward component selection using support vector machines were adopted to perform the FNC measure and extract the functional networks' connectivity patterns (FCP). Pearson's correlation analysis was used to calculate the correlations between the FCP and ECT response. Results: A total of 82 TRD patients in the ECT group were successfully treated. On an average, 8.50 ~ 2.00 ECT sessions were conducted. After ECT treatment, only 42 TRD patients had an improved response to ECT (the Hamilton scores reduction rate was more than 50%), response rate 51%. 8 FNs (anterior and posterior default mode network, bilateral frontoparietal network, audio network, visual network, dorsal attention network, and sensorimotor network) were obtained using GIG-ICA. We did not found that FCPs were significantly different between TRD patients and healthy controls. Moreover, the baseline FCP was unrelated to the ECT treatment response. Conclusions: The FNC was not significantly different between the TRD patients and healthy controls, and the baseline FCP was unrelated to the ECT treatment response. These findings will necessitate that we modify the experimental scheme to explore the mechanisms underlying ECT's effects on depression and explore the specific predictors of the effects of ECT based on the pre-ECT treatment magnetic resonance imaging.
基金The Chinese Academy of Sciences Strategic Priority Research Program,No.XDA05050602The Key Program of National Natural Science Foundation of China,No.31290221
文摘Vegetation biomass is an important component of terrestrial ecosystem carbon stocks. Grasslands are one of the most widespread biomes worldwideplaying an important role in global carbon cycling. Thereforestudying spatial patterns of biomass and their correlations to environment in grasslands is fundamental to quantifying terrestrial carbon budgets. The Eurasian steppean important part of global grasslandsis the largest and relatively well preserved grassland in the world. In this studywe analyzed the spatial pattern of aboveground biomass(AGB)and correlations of AGB to its environment in the Eurasian steppe by meta-analysis. AGB data used in this study were derived from the harvesting method and were obtained from three data sources(literatureglobal NPP database at the Oak Ridge National Laboratory Distributed Active Archive Center(ORNL)some data provided by other researchers). Our results demonstrated that:(1) as for the Eurasian steppe overallthe spatial variation in AGB exhibited significant horizontal and vertical zonality. In detailAGB showed an inverted parabola curve with the latitude and with the elevationwhile a parabola curve with the longitude. In additionthe spatial pattern of AGB had marked horizontal zonality in the Black Sea-Kazakhstan steppe subregion and the Mongolian Plateau steppe subregionwhile horizontal and vertical zonality in the Tibetan Plateau alpine steppe subregion.(2) Of the examined environmental variablesthe spatial variation of AGB was related to mean annual precipitation(MAP)mean annual temperature(MAT)mean annual solar radiation(MAR)soil Gravel contentsoil p H and soil organic content(SOC) at the depth of 0–30 cm. NeverthelessMAP dominated spatial patterns of AGB in the Eurasian steppe and its three subregions.(3) A Gaussian function was found between AGB and MAP in the Eurasian steppe overallwhich was primarily determined by unique patterns of grasslands and environment in the Tibetan Plateau. AGB was significantly positively related to MAP in the Black Sea-Kazakhstan steppe subregion(elevation 〈 3000 m)the Mongolian Plateau steppe subregion(elevation 〈 3000 m) and the surface(elevation ≥ 4800 m) of the Tibetan Plateau. Neverthelessthe spatial variation in AGB exhibited a Gaussian function curve with the increasing MAP in the east and southeast margins(elevation 〈 4800 m) of the Tibetan Plateau. This study provided more knowledge of spatial patterns of AGB and their environmental controls in grasslands than previous studies only conducted in local regions like the Inner Mongolian temperate grasslandthe Tibetan Plateau alpine grasslandetc.
基金National Natural Science Foundation of China, No.41171152
文摘Land consolidation has a profound impact on landscape patterns and ecological functions at various scales through engineering and biological measures. In recent years, China invests more than 100 billion RMB yuan on land consolidation each year. To under- stand how land consolidation affects landscape patterns and ecosystems, we investigated the ecosystem service value and the ecological connectivity in a consolidated area of Da'an city from 2008 to 2014 using a revised ecological connectivity index. The results indicated that land consolidation has certain negative influences on the ecosystem services in this area. The total ecosystem service value will decrease by nearly 30% in the late stage of consolida- tion. This decrease is caused by the loss of ecosystem service of the wetland and grassland, despite a sensible increase of cultivated land. In addition, land consolidation could change the ecological connectivity as well as the land use structure. Up to 85% of the entire area will be in low connectivity in the late stage of consolidation, representing a 6.23% increase in the total coverage compared to pre-consolidation. Finally, the different connectivity landscape and their key areas can be identified by the revised ecological connectivity index effectively. This study is helpful to trace out the relationships between landscape pattern and ecological process, and provides insights for ecological planning and designing of land consolidation in this area. We suggest that more attentions should be paid to improve the quality and eco- system service value per unit area of the landscape, to establish ecological compensation mechanism of wetland losses, and to create the ecological corridors along the least accu- mulated impendence surface in the key areas during land consolidation.