期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?
1
作者 M'hammed BOUALLALA Souad NEFFAR +1 位作者 Lyès BRADAI Haroun CHENCHOUNI 《Journal of Arid Land》 SCIE CSCD 2023年第6期667-694,共28页
The effects of sand encroachment on composition,diversity,and functional patterns of vegetation in drylands are rarely studied,and yet addressing these aspects is important to deepen our understanding of the biodivers... The effects of sand encroachment on composition,diversity,and functional patterns of vegetation in drylands are rarely studied,and yet addressing these aspects is important to deepen our understanding of the biodiversity conservation.This study aimed to investigate the effect of sand encroachment on plant functional biodiversity of desert pavements(gravel deserts)in the Sahara Desert of Algeria.Plants were sampled and analyzed in three desert pavements with different levels of sand encroachment(LSE)and quantity of aeolian deposits(low,LLSE;medium,MLSE;and high,HLSE).Within the sample-plot area(100 m^(2)),density of every plant species was identified and total vegetation cover was determined.Plant taxonomic and functional diversity were analyzed and compared between LSE.Result showed that 19 plant species in desert pavements were classified into 18 genera and 13 families.Asteraceae and Poaceae were the most important families.The species Anabasis articulata(Forssk)Moq.characterized LLSE desert pavements with 11 species,whereas Thymelaea microphylla Coss.&Durieu ex Meisn.and Calobota saharae(C&D)Boatwr.&van Wyk were dominant species of desert pavements with MLSE(14 species)and HLSE(10 species),respectively.The highest values of species richness and biodiversity were recorded in desert pavements with MLSE,while low values of these ecological parameters were obtained in desert pavements with HLSE.Desert pavements with LLSE were characterized with the highest values of species abundances.Plant communities were dominated by chamaephytes,anemochorous,arido-active,and competitive stress-tolerant plants.The increase in LSE along the gradient from LLSE to HLSE induced significant changes in plant community variables including decreases in plant density,plant rarity,lifeform composition,morphological type,and aridity adaptation.Desert pavements with HLSE favor the degradation of vegetation and trigger biodiversity erosion. 展开更多
关键词 desert pavements hot and arid rangeland plant diversity land degradation sand encroachment plant functional trait Sahara Desert
下载PDF
Differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia×fraseri and Osmanthus fragrans 被引量:12
2
作者 Congyan Wang Hongguang Xiao +1 位作者 Jun Liu Jiawei Zhou 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第3期473-479,共7页
Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two eve... Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osrnanthus fragrans. Specific areas of red leaves are higher than that of green leaves in both species. Thus, the material investment per unit area and per lamina of red leaves is significantly lower than that of green leaves, implying an utmost effort of red leaves to increase light capture and use efficiency because of their low leafchlorophyll concentration. The higher petiole length of green leaves compared with that of red leaves indicates that adult green leaves may have large fractional biomass allocation to support the lamina structures in capturing light with maximum efficiency and obtaining a high growth rate. The high range of the phenotypic plasticity of leaf size, leaf thickness, single-leaf wet and dry weights, and leaf moisture of green leaves may be beneficial in achieving efficient control of water loss and nutrient deprivation. The high range of phenotypic plasticity of leaf chlorophyll concentration of red leaves may be advantageous in increasing resource (especially light) capture anduse efficiency because this leaf type is juvenile in the growth stage and has low leaf-chlorophyll concentration. 展开更多
关键词 Foliage color Leaf functional traits Osmanthus fragrans Photinia × fraseri Red robin Specific leaf area
下载PDF
Mixing planting proportions in a plantation affects functional traits and biomass allocation of Cunninghamia lanceolata and Phoebe bournei seedlings 被引量:4
3
作者 Meiqin Zha Youzhi Han Xiangrong Cheng 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第6期1793-1805,共13页
Functional traits of trees are significantly associated with their adaptation strategies and productivity.However,the effects of species composition and mixing proportion on the functional traits of trees grown in mix... Functional traits of trees are significantly associated with their adaptation strategies and productivity.However,the effects of species composition and mixing proportion on the functional traits of trees grown in mixed plantations have not been studied extensively.In this study,planting experiments(duration about seven months)were used to study variations in functional traits and biomass allocation of C unninghamia lanceolata(Lamb.)Hook and Phoebe bournei(Hemsley)Yang seedlings in five different mixes(0C:4P,1C:3P,1C:1P,3C:1P,and 4C:0P).Total leaf area per seedling increased in each species as its respective proportion in the mixture decreased.However,the specific leaf area decreased for P.bournei under low percent composition,and the specific leaf area for C.lanceolata differed only marginally among the plantings.The net photosynthetic rates of the two species were higher in the mixed plantings than in their corresponding monocultures,whereas the transpiration rate,stomatal conductance,and instantaneous water use efficiency were not different among the plantings.The average root length and root surface area of C.lanceolata and P.bournei were higher in the mixed plantings than in their monocultures.Specifically,root surface area of C.lanceolate and both root length and surface area of P.bournei increased significantly in the 1C:3P and 2C:2P mixed plantings.Leaf,stem,root,and total dry mass per seedling for C.lanceolata decreased with its increasing percent composition in the mixed plantings,while these variables varied less for P.bournei.The plasticity of biomass allocation was relatively low for both species.Total biomass per planting was higher in the mixed plantings than in the monocultures.Our study indicates that species composition and mixing proportion can considerably affect the functional traits of C.lanceolata and P.bournei.The increase in productivity in the mixed plantings may be partially attributed to low rates of competition between the two species,and future studies should examine the different interspecies relationships.The results of this study can be used to improve plantation productivity and ultimately increase the sustainability of tree products and help to better understand the adaptation strategies of plant coexistence. 展开更多
关键词 Mixing proportion Tree species composition functional traits Interspecific relationship Intraspecific relationship
下载PDF
Genetic differentiation in functional traits among wild cherry (Prunus avium L.) half-sib lines 被引量:1
4
作者 Srđan Stojnić Branislav Kovačević +4 位作者 Marko Kebert Verica Vasić Vanja Vuksanović Branislav Trudić Saša Orlović 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第3期991-1003,共13页
Understanding intra-specific variation in leaf functional traits is one of the key requirements for the evaluation of species adaptive capacity to ongoing climate change, as well as for designing long-term breeding an... Understanding intra-specific variation in leaf functional traits is one of the key requirements for the evaluation of species adaptive capacity to ongoing climate change, as well as for designing long-term breeding and conservation strategies. Hence, data of 19 functional traits describing plant physiology, antioxidant properties, anatomy and morphology were determined on 1-year-old seedlings of wild cherry (Prunus avium L.) half-sib lines. The variability within and among half-sib lines, as well as the estimation of multi-trait association, were examined using analysis of variance (ANOVA) followed by Tukey's honestly significant difference test and multivariate analyses: principal component analysis (PCA), canonical discriminant analysis (CDA) and stepwise discriminant analysis (SDA). Pearson’s correlation coefficient was used to evaluate linear correlation between the study parameters. The results of the ANOVA showed the presence of statistically significant differences (P < 0.01) among half-sib lines for all study traits. The differences within half-sib lines, observed through the contribution of the examined sources of variation to the total variance (%), had higher impact on total variation in the majority of the examined traits. Pearson’s correlation analysis and PCA showed strong relationships between gas exchange in plants and leaf size and stomatal density, as well as between leaf biomass accumulation, intercellular CO_(2) concentration and parameters related to antioxidant capacity of plants. Likewise, the results of SDA indicate that transpiration and stomatal conductance contributed to the largest extent, to the discrimination of the wild cherry half-sib lines. In addition, PCA and CDA showed separation of the wild cherry half-sib lines along the first principal component and first canonical variable with regards to humidity of their original sites. Multiple adaptive differences between the wild cherry half-sib lines indicate high potential of the species to adapt rapidly to climate change. The existence of substantial genetic variability among the wild cherry half-sib lines highlights their potential as genetic resources for reforestation purposes and breeding programmes. 展开更多
关键词 Wild cherry Common garden experiment VARIABILITY Multivariate statistics Leaf functional traits
下载PDF
Variations in leaf functional traits and physiological characteristics of Abies georgei var.smithii along the altitude gradient in the Southeastern Tibetan Plateau 被引量:1
5
作者 GUO Qi-qiang LI Hui-e ZHANG Wen-hui 《Journal of Mountain Science》 SCIE CSCD 2016年第10期1818-1828,共11页
Variations in leaf functional traits of Abies georgei var. smithii at 3700, 3900, 4100, 4300, and 4390 m altitude were investigated in 15 typical plots in the Southeastern Tibetan Plateau. In each plot, three seedling... Variations in leaf functional traits of Abies georgei var. smithii at 3700, 3900, 4100, 4300, and 4390 m altitude were investigated in 15 typical plots in the Southeastern Tibetan Plateau. In each plot, three seedlings were selected, of which functional leaves in current-year sunny branches were chosen for the measurement of morphological, photosynthetic, and physiological and biochemical characteristics, and their variations were analyzed. Results showed that significant variations existed among the leaf functional traits of A. georgei var. smithii along the altitudinal gradient, as well as their physiological adaption indicators. Leaf area decreased, while the mass per area and thickness of leaf increased at an altitude above 4,100 m. The maxima of pigment, total nitrogen concentration, net photosynthesis rate during light-saturated, and when water use efficiency appeared at 4100 m altitude. In addition, A. georgei var. smithii seedlings regulated the activities of superoxide dismutase and ascorbate peroxidase to resist abiotic stress under 4100 m altitude. Meanwhile, malondialdehyde concentration and the dark respiration rate rapidly increased, which indicates that A. georgei var. smithii seedlingssuffered from heavy abiotic stress from 4100 m to 4390 m altitude. Basing on variations in leaf functional traits along the altitude gradient, we inferred that 4100 m altitude was the suitable region for A. georgei var. smithii growth in the Sygera Mountain. Moreover, the harsh environment was the main limiting factor for A. georgei var. smithii population expansion to high altitude. 展开更多
关键词 Alpine plant Abies georgei Leaf functional traits Photosynthetic parameters Enzyme activity and malondialdehyde concentration
下载PDF
Mismatch between species distribution and climatic niche optima in relation to functional traits
6
作者 Zhenghua Lian Juan Wang +2 位作者 Chunyu Zhang Xiuhai Zhao Klaus von Gadow 《Forest Ecosystems》 SCIE CSCD 2022年第6期813-822,共10页
Background:Forecasts of climate change impacts on biodiversity often assume that the current geographical distributions of species match their niche optima.However,empirical evidence has challenged this assumption,sug... Background:Forecasts of climate change impacts on biodiversity often assume that the current geographical distributions of species match their niche optima.However,empirical evidence has challenged this assumption,suggesting a mismatch.We examine whether the mismatch is related to functional traits along temperature or precipitation gradients.Methods:The observed distributions of 32 tree species in northeast China were evaluated to test this mismatch.Bayesian models were used to estimate the climatic niche optima,i.e.the habitats where the highest species growth and density can be expected.The mismatch is defined as the difference between the actual species occurrence in an assumed niche optimum and the habitat with the highest probability of species occurrence.Species’functional traits were used to explore the mechanisms that may have caused the mismatches.Results:Contrasting these climatic niche optima with the observed species distributions,we found that the distribution-niche optima mismatch had high variability among species based on temperature and precipitation gradients.However,these mismatches depended on functional traits associated with competition and migration lags only in temperature gradients.Conclusions:We conclude that more relevant research is needed in the future to quantify the mismatch between species distribution and climatic niche optima,which may be crucial for future designs of forested landscapes,species conservation and dynamic forecasting of biodiversity under expected climate change. 展开更多
关键词 DEMOGRAPHY functional traits Mean annual temperature Mean annual precipitation Niche theory Species distribution
下载PDF
Advancements in assessing soil health through functional traits and energy flow analysis of soil
7
作者 Jingnan Zhang Shiyu Li +2 位作者 Elly Morrien Neil B.McLaughlin Shixiu Zhang 《Soil Ecology Letters》 CSCD 2024年第2期21-30,共10页
We examined the development of soil nematodes ecological indices from the perspective off unctionaltraits.We found that soil nematode energy flow analyses based on multiple functional traits quantify the dynamics of e... We examined the development of soil nematodes ecological indices from the perspective off unctionaltraits.We found that soil nematode energy flow analyses based on multiple functional traits quantify the dynamics of energy flow across multipletrophic levels to provide a more comprehensive perspective.We conducted comparative analyses of the sensitivities of NMF and energy flow to verify that the energy flow analyses are more sensitive and have greater potential to reveal soil health and ecosystem function.Future in-depth studies of functional traits and energy flow analysis can help us achieve informed soil management practices,sustainable agriculture,andhealthiersoilecosystems.nignerEauc Tess CT Nematode ecological index based on functional traits:MI El,S,BI,C1 NMF Bongen.1990 Ferrisetal,2001 Ferris,2010 energs low analysis of soil nematodes Compare thecological index(NMf)and Bacterivores(Ba)Functional traits Energy flux Fungihores(Fn)rahn Soilnematodes latitude Lindicator Plant-parasites(PP)PF Energflus Soilhealth Omnivores-predators(oP)latitude Energy flow analysis of soil nematodes:By quantifying energy fux among trophic groups Barbes et al.,2014,2018 This paper examines the development of ecological indices for soil nematodes from the perspective of functional traits.It emphasizes the increasing significance of integrating multiple functional traits to achieve a more accurate assessment of soil health.Ecological indices based on life history strategies,feeding habits,and body size provide useful tools for assessing soil health.However,these indices do not fully capture the dynamics ofenergyflow across multiple-trophic levels inthesoil foodweb,which is critical fora deeperunderstanding of the intrinsic properties of soil health.By combining functional traits such as functional group,body size,feeding preference and metabolic rate,nematode energy flow analyses provide a more comprehensive perspective.This approach establishes a direct correlation between changes in the morphology,physiology,and metabolism of soil organisms and alterations in their habitat environment.We conducted comparative analyses of the sensitivity of nematode metabolic footprints and energy flow to latitudinal variation using a nematode dataset from the northeastern black soil region in China.The findings suggest that energy flow analyses are more sensitive to latitude and have greater potential to reveal soil health and ecosystem function.Therefore,future research should prioritize the development of automated and efficient methods for analyzing nematode traits.This will enhance the application of energy flow analyses in nematode food webs and support the development of sustainable soil management and agriculturalpractices. 展开更多
关键词 soil nematodes soil health nematodefoodweb functional traits energyflux
原文传递
Host plant traits play a crucial role in shaping the composition of epiphytic microbiota in the arid desert,Northwest China
8
作者 ZHANG Jun ZHANG Yuanming ZHANG Qi 《Journal of Arid Land》 SCIE CSCD 2024年第5期699-724,共26页
Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host... Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants. 展开更多
关键词 phyllosphere epiphytic bacteria phyllosphere epiphytic fungi community structure community diversity functional diversity plant life form plant functional traits
下载PDF
Latitudinal pattern and the driving factors of leaf functional traits in 185 shrub species across eastern China 被引量:8
9
作者 Yongkai Luo Huifeng Hu +3 位作者 Mengying Zhao He Li Shangshi Liu Jingyun Fang 《Journal of Plant Ecology》 SCIE CSCD 2019年第1期67-77,共11页
Aims To explore the pattern of the leaf functional traits of shrub species along a latitudinal gradient in eastern China and determine the driv-ing factors of leaf trait variation at a large scale.Methods We investiga... Aims To explore the pattern of the leaf functional traits of shrub species along a latitudinal gradient in eastern China and determine the driv-ing factors of leaf trait variation at a large scale.Methods We investigated the leaf thickness(LT),leaf area(LA),specific leaf area(SLA)and leaf dry mass content(LDMC)of 185 shrub species from 13 sites across eastern China.The trends of these four-leaf traits were ana-lyzed with respect to latitude,and the differences between different life forms(e.g.,evergreen and deciduous)and habitats(e.g.,understory and typical)were compared.We quantified the effects of the plant life forms and environmental factors on the leaf traits via mixed-model analyses.Important Findings The LT and LA decreased,whilst and the LDMC increased,as the latitude increased,and significant differences in these traits were observed between the different plant life forms.The LT and LA were smaller,whereas the SLA and LDMC were larger in decidu-ous shrubs than in evergreen shrubs.Among the different habitats,the LA and SLA were larger,while the LDMC was smaller in under-story shrubs than in typical shrub species.These results indicate that typical shrub species are better adapted to drier environments,as indicated by a reduced LT and increased LDMC.Furthermore,general linear models showed that variations in the four-leaf traits with respect to latitude were mainly caused by a shift in plant life forms. 展开更多
关键词 shrub species leaf functional traits latitude trend different life forms eastern China
原文传递
Functional traits of poplar leaves and fine roots responses to ozone pollution under soil nitrogen addition 被引量:2
10
作者 Pin Li Rongbin Yin +2 位作者 Huimin Zhou Sheng Xu Zhaozhong Feng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第3期118-131,共14页
Concurrent ground-level ozone(O_(3))pollution and anthropogenic nitrogen(N)deposition can markedly influence dynamics and productivity in forests.Most studies evaluating the functional traits responses of rapid-turnov... Concurrent ground-level ozone(O_(3))pollution and anthropogenic nitrogen(N)deposition can markedly influence dynamics and productivity in forests.Most studies evaluating the functional traits responses of rapid-turnover organs to O_(3) have specifically examined leaves,despite fine roots are another major source of soil carbon and nutrient input in forest ecosystems.How elevated O_(3) levels impact fine root biomass and biochemistry remains to be resolved.This study was to assess poplar leaf and fine root biomass and biochemistry responses to five different levels of O_(3) pollution,while additionally examining whether four levels of soil N supplementation were sufficient to alter the impact of O_(3) on these two organs.Elevated O_(3) resulted in a more substantial reduction in fine root biomass than leafbiomass;relative to leaves,more biochemically-resistant components were present within fine root litter,which contained high concentrations of lignin,condensed tannins,and elevated C:N and lignin:N ratios that were associated with slower rates of litter decomposition.In contrast,leaves contained more labile components,including nonstructural carbohydrates and N,as well as a higher N:P ratio.Elevated O_(3) significantly reduced labile components and increased biochemically-resistant components in leaves,whereas they had minimal impact on fine root biochemistry.This suggests that O_(3) pollution has the potential to delay leaf litter decomposition and associated nutrient cycling.N addition largely failed to affect the impact of elevated O_(3) levels on leaves or fine root chemistry,suggesting that soil N supplementation is not a suitable approach to combating the impact of O_(3) pollution on key functional traits of poplars.These results indicate that the significant differences in the responses of leaves and fine roots to O_(3) pollution will result in marked changes in the relative belowground roles of these two litter sources within forest ecosystems,and such changes will independently of nitrogen load. 展开更多
关键词 Ozone pollution Nitrogen(N)input Fine roots LEAVES functional traits Chemical complexity
原文传递
Effects of Changing Precipitation and Warming on Functional Traits of Zonal Stipa Plants from Inner Mongolian Grassland 被引量:1
11
作者 吕晓敏 周广胜 +1 位作者 王玉辉 宋希亮 《Journal of Meteorological Research》 SCIE CSCD 2016年第3期412-425,共14页
The mechanisms driving changes in dominant plant species are the key for understanding how grassland ecosystems respond to climate change.In this study,we examined plant functional traits(morphological characteristic... The mechanisms driving changes in dominant plant species are the key for understanding how grassland ecosystems respond to climate change.In this study,we examined plant functional traits(morphological characteristics:plant height,leaf area,and leaf number;biomasses:aboveground,belowground,and total;and growth indices:root-to-shoot ratio,specific leaf area,and leaf mass ratio) of four zonal Stipa species(S.baicalensis,S.bungeana,S.grandis,and S.breviflora) from Inner Mongolian grassland in response to warming(control,+1.5,+2.0,+4.0,and +6.0℃),changing precipitation(-30%,-15%,control,+15%,and+30%),and their combined effects via climate control chambers.The results showed that warming and changing precipitation had significant interactive effects,different from the accumulation of single-factor effects,on functional traits of Stipa species.The correlation and sensitivity of different plant functional traits to temperature and precipitation differed.Among the four species,the accumulation and variability of functional traits had greater partial correlation with precipitation than temperature,except for leaf number,leaf area,and specific leaf area,in S.breviflora,S.bungeana,and S.grandis.For S.baicalensis,the accumulation and variability of plant height,aboveground biomass,and root-to-shoot ratio only had significant partial correlation with precipitation.However,the variability of morphological characteristics,biomasses,and some growth indices,was more sensitive to temperature than precipitation in S.bungeana,S.grandis,and S.breviflora—except for aboveground biomass and plant height.These results reveal that precipitation is the key factor determining the growth and changes in plant functional traits in Stipa species,and that temperature mainly influences the quantitative fluctuations of the changes in functional traits. 展开更多
关键词 precipitation change WARMING functional traits Stipa species Inner Mongolian grassland
原文传递
Functional composition of tall-statured trees underpins aboveground biomass in tropical forests
12
作者 Suwash Kunwar Li-Qiu Wang +3 位作者 Maryam Kazempour Larsary Rajeev Chaudhary Puspa Raj Joshi Arshad Ali 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期333-344,共12页
The influences of trait diversity(i.e.,the niche complementarity effect)and functional composition(i.e.,the mass ratio effect)on aboveground biomass(AGB)is a highly debated topic in forest ecology.Therefore,further st... The influences of trait diversity(i.e.,the niche complementarity effect)and functional composition(i.e.,the mass ratio effect)on aboveground biomass(AGB)is a highly debated topic in forest ecology.Therefore,further studies are needed to explore these mechanisms in unstudied forest ecosystems to enhance our understanding,and to provide guidelines for specific forest management.Here,we hypothesized that functional composition would drive AGB better than trait diversity and stem size inequality in the(sub-)tropical forests of Nepal.Using data from 101 forest plots,we tested 25 structural equation models(SEMs)to link elevation,stem DBH inequality,trait diversity(i.e.,trait richness,evenness,dispersion and divergence),functional composition[i.e.,community-weighted of maximum height mean(CWM of Hmax),specific leaf area(CWM of SLA),leaf dry matter content(CWM of LDMC),and wood density(CWM of WD)]and AGB.The best-fitted SEMs indicated that CWM of Hmax promoted AGB while overruling the impacts of trait diversity indices on AGB.However,low trait diversity indices were linked with higher AGB while overruling the effects of CWM of SLA,LDMC and WD on AGB.In addition,AGB decreased with increasing elevation,whereas stem size inequality did not influence AGB.Our results suggest that divergent species’functional strategies could shape AGB along an altitudinal gradient in tropical forests.We argue that forest management practices should include plant functional traits in the management plan for the co-benefits of biodiversity conservation and carbon sequestration that underpins human wellbeing. 展开更多
关键词 functional traits Mass ratio Niche complementarity Niche overlap TOPOGRAPHY
下载PDF
Plant functional trait diversity and structural diversity co-underpin ecosystem multifunctionality in subtropical forests
13
作者 Shuai Ouyang Mengmeng Gou +8 位作者 Pifeng Lei Yue Liu Liang Chen Xiangwen Deng Zhonghui Zhao Yelin Zeng Yanting Hu Changhui Peng Wenhua Xiang 《Forest Ecosystems》 SCIE CSCD 2023年第2期153-161,共9页
Tree species diversity is assumed to be an important component in managing forest ecosystems because of effects on multiple functions or ecosystem multifunctionality.However,the importance of tree diversity in determi... Tree species diversity is assumed to be an important component in managing forest ecosystems because of effects on multiple functions or ecosystem multifunctionality.However,the importance of tree diversity in determining multifunctionality in structurally complex subtropical forests relative to other regulators(e.g.,soil microbial diversity,stand structure,and environmental conditions)remains uncertain.In this study,effects of aboveground(species richness and functional and structural diversity)and belowground(bacterial and fungal diversity)biodiversity,functional composition(community-weighted means of species traits),stand structure(diameter at breast height and stand density),and soil factors(pH and bulk density)on multifunctionality(including biomass production,carbon stock,and nutrient cycling)were examined along a tree diversity gradient in subtropical forests.The community-weighted mean of tree maximum height was the best predictor of ecosystem multifunctionality.Functional diversity explained a higher proportion of the variation in multifunctionality than that of species richness and fungal diversity.Stand structure-played an important role in modulating the effects of tree diversity on multifunctionality.The work highlights that species composition and maximizing forest structural complexity are effective strategies to increase forest multifunctionality while also conserving biodiversity in the management of multifunctional forests under global environmental changes. 展开更多
关键词 Abiotic and biotic factors BIODIVERSITY functional composition functional traits Soil microbial diversity Stand structure
下载PDF
Functional diversity in an Andean subparamo affected by wildfire in Colombia
14
作者 Korina Ocampo-Zuleta Angela Parrado-Rosselli 《Plant Diversity》 SCIE CAS CSCD 2023年第4期385-396,共12页
Recently,the Andean subparamo in Colombia has experienced severe wildfires,but little is known about the functional composition of recovering or not after a wildfire.Therefore,we examined the functional community comp... Recently,the Andean subparamo in Colombia has experienced severe wildfires,but little is known about the functional composition of recovering or not after a wildfire.Therefore,we examined the functional community composition subparamo affected byfire in 2016.We documented how functional traits changed 31 months after the disturbance and compared them with an unburned site.We sampled from one to two years after the fire every four months,then registered all recruits in 1655m plots.New individuals were classified into strategy functional groups based on the traits of persistence and dispersal.The first group was stem type and regeneration mechanism(seedling and resprout),and the second was fruit type and dispersal mode.We investigated the degree to which functional diversity changes plant communities over time(woody and non-woody),and we compared it with an unburned site.The most relevant results showed that resprouts and seed regenerated increased post-fire time and significant differences between sampling periods.The anemochory is the most relevant dispersal mode that indicates the community capacity to colonize the new gaps opened by the fire rapidly.We discuss how wildfire appears to be a triggering factor for persistence and dispersal strategy groups in subparamo burned given their characteristics of tolerance to stress.For this reason,a greater functional divergence between the ecosystems studied post-fire recovery has been related to higher levels of biodiversity at the landscape scale due to the high degree of endemism and significant differences in species composition between paramos. 展开更多
关键词 Subparamo Cerro aguanoso Dispersal mode functional traits Postfire regeneration
下载PDF
Did Species and Functional Diversities of Sandy Intertidal Marine Nematodes Reveal Similar Response to Environmental Changes?
15
作者 SONG Huili MU Fanghong +1 位作者 SUN Yan HUA Er 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期527-540,共14页
Free living marine nematodes were sampled from two sandy beaches in Dalian City,in December of 2015,and April,July,and October of 2016.The spatial and seasonal variations of marine nematode species diversity(based on ... Free living marine nematodes were sampled from two sandy beaches in Dalian City,in December of 2015,and April,July,and October of 2016.The spatial and seasonal variations of marine nematode species diversity(based on species abundance dataset)and functional diversity(based on functional traits dataset:feeding types and life history strategies)were investigated to understand the environmental drivers and how they respond to specific environmental variations.Sediment granularity was revealed to be the main environmental factor causing spatial differences in nematode diversity indices between the two beaches.Species diversity indices,namely species number,Margalef index,Shannon-Wiener diversity index(H’),were higher in fine-grained sediments,while the functional diversity indices,including functional evenness,functional dispersion,and Rao’s quadratic entropy index(RaoQ),were higher in coarse-grained sediments.Nematode species diversity indices also fluctuated with seasonal variations of temperature,dissolved oxygen,pH,salinity,and sediment chlorophyll-a within the study beaches.However,functional diversity indices did not show significant seasonal variations and exhibited weak correlation with the studied environmental variables.Overall,the functional diversity indices were negatively correlated with the species diversity indices,suggesting an inconsistent response to environmental changes.A decrease in nematode species diversity in coarse sands,accompanied by an increase in functional diversity,can be regarded as an early warning signal of environment disturbance.If more biological traits are involved in calculating functional diversity indices,it will be helpful for the future study of the internal connections of species diversity and functional diversity. 展开更多
关键词 marine nematode species diversity functional diversity functional traits sandy beaches
下载PDF
Legacy effects of historical woodland changes on contemporary plant functional composition
16
作者 Ji-Zhong Wan Chun-Jing Wang 《Forest Ecosystems》 SCIE CSCD 2023年第5期569-578,共10页
Considering the legacy of plant functional composition can help assess ecosystem functions and ecosystem services across different spatial scales under land cover changes.Woody plants likely respond to natural and ant... Considering the legacy of plant functional composition can help assess ecosystem functions and ecosystem services across different spatial scales under land cover changes.Woody plants likely respond to natural and anthropogenic perturbations due to historical events(e.g.,agricultural development),thus contemporary plant functional composition may be explained by historical woodland change,a type of land cover change.We propose that historical woodland changes may have legacy effects on contemporary plant functional composition.Here,we used partial least squares regression and linear mixed model analyses to test this assumption by coupling data on community weighted means(CWM)and community weighted variance(CWV)of vegetation plots and calculating the time of woodland existence across different periods from AD 0 to 2017.We found that the legacy effects of historical land cover changes on CWM and CWV during the existence time of woodland,particularly from AD 0 to 900,were drivers of contemporary plant functional composition at large spatial scales.Furthermore,historical woodland changes can affect contemporary plant functional composition,depending on the biome type.Particularly,the CWM of plant height,seed mass,and seed length showed the strongest correlations with woodland changes from AD 1910 to 2010 in tropics with year-round rain,and the CWM of leaf traits correlated with woodland changes from AD 0 to 1700 in tropics with summer rain.Our study provides the effective evidence on the legacy of historical woodland changes and the effects on contemporary plant functional composition,which is crucial with respect to effective management of plant diversity and assessing ecosystem functions and services from local to global scales over time. 展开更多
关键词 BIOME Community weighted means Global scale Historical woodland Land cover Plant functional trait
下载PDF
Selective logging enhances ecosystem multifunctionality via increase of functional diversity in a Pinus yunnanensis forest in Southwest China 被引量:3
17
作者 Xiaobo Huang Shuaifeng Li Jianrong Su 《Forest Ecosystems》 SCIE CSCD 2020年第4期733-745,共13页
Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycli... Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycling,soil carbon stocks,decomposition,and wood production)to five selective logging intensities in a Pinus yunnanensisdominated forest.We included a control group with no harvest to evaluate the potential shifts in EMF of the P.yunnanensis forests.We also assessed the relationship between above-and belowground biodiversity and EMF under these different selective logging intensities.Additionally,we evaluated the effects of biotic and abiotic factors on EMF using a structural equation modeling(SEM)approach.Results:Individual ecosystem functions(EFs)all had a significant positive correlation with selective logging intensity.Different EFs showed different patterns with the increase of selective logging intensity.We found that EMF tended to increase with logging intensity,and that EMF significantly improved when the stand was harvested at least twice.Both functional diversity and soil moisture had a significant positive correlation with EMF,but soil fungal operational taxonomic units(OTUs)had a significant negative correlation with EMF.Based on SEM,we found that selective logging improved EMF mainly by increasing functional diversity.Conclusion:Our study demonstrates that selective logging is a good management technique from an EMF perspective,and thus provide us with potential guidelines to improve forest management in P.yunnanensis forests in this region.The functional diversity is maximized through reasonable selective logging measures,so as to enhance EMF. 展开更多
关键词 BIODIVERSITY Ecosystem multifunctionality functional traits Pinus yunnanensis Soil enzymatic activity Structural equation modeling
下载PDF
Functional trait and community phylogenetic analyses reveal environmental filtering as the major determinant of assembly of tropical forest tree communities in the Western Ghats biodiversity hotspot in India 被引量:2
18
作者 K.Nagaraju Shivaprakash B.R.Ramesh +1 位作者 Ramanan Umashaanker Selvadurai Dayanandan 《Forest Ecosystems》 SCIE CSCD 2018年第4期345-360,共16页
Background: Improved understanding of the processes shaping the assembly of tropical tree communities is crucial for gaining insights into the evolution of forest communities and biological diversity. The climate is t... Background: Improved understanding of the processes shaping the assembly of tropical tree communities is crucial for gaining insights into the evolution of forest communities and biological diversity. The climate is thought to be the first order determinant of abundance and distribution patterns of tree species with contrasting traits such as evergreen and deciduous leaf phenology. However, the relative role of neutral, and niche-based processes in the evolution of these patterns remain poorly understood.Methods: Here, we perform an integrated analysis of the data on tree species abundance, functional traits and community phylogeny from a network of 96 forest plots, each 1 ha in size, distributed along a broad environmental gradient in the central Western Ghats, India. Then, we determine the relative importance of various process in assembly and structuring of tropical forest communities with evergreen and deciduous leaf phenology.Results: The deciduous leaf phenological trait has repeatedly evolved among multiple distantly related lineages. Tree communities in dry deciduous forests were phylogenetically clustered and showed a low range and variance of functional traits related to light harvesting, reproduction, and growth suggesting niche-based processes such as environmental filtering play a vital role in the assembly of tree communities in these forests. The external factors such as human-mediated disturbance also significantly, but to a lesser extent, influences the species and phylogenetic turnover.Conclusions: These findings revealed that the environmental filtering plays a significant role in assembly of tree communities in the biologically diverse tropical forests in the Western Ghats biodiversity hotspot. 展开更多
关键词 functional traits Phylogenetic turnover DECIDUOUS EVERGREEN Niche-based processes Human disturbance
下载PDF
Evaluating alternative hypotheses behind biodiversity and multifunctionality relationships in the forests of Northeastern China 被引量:1
19
作者 Qingmin Yue Minhui Hao +5 位作者 Yan Geng Xuerui Wang Klaus von Gadow Chunyu Zhang Xiuhai Zhao Lushuang Gao 《Forest Ecosystems》 SCIE CSCD 2022年第3期301-310,共10页
Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships... Background:The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted.However,the specific mechanisms affecting biodiversity and ecosystem multifunctionality(BEMF)relationships in forests are largely unknown.This is particularly evident for the macroscale of a large forested landscape.Methods:Based on 412 one-tenth hectare field plots distributed over forested areas across northeastern China,we evaluated three alternative hypotheses explaining the relationships between BEMF,namely:niche complementarity,mass ratio,and vegetation quantity effect.We used Rao's quadratic entropy and community weighted mean trait values to quantify forest“biodiversity”.These two variables represent two complementary aspects of functional properties,which are in line with niche complementary and mass ratio effects,respectively.Results:Ecosystem multifunctionality was negatively associated with the community weighted mean values of acquisitive traits(a proxy of mass ratio effect).Rao's quadratic entropy(a proxy of niche complementarity)had no relationship with ecosystem multifunctionality.Higher stand biomass greatly increased ecosystem multifunctionality,which is in line with the vegetation quantity effect.Our results confirm that in the temperate forests of northeastern China,the relationship of BEMF was primarily affected by vegetation quantity,followed by mass ratio effects.Conclusions:The results of this study contribute to a better understanding of the main drivers of ecosystem multifunctionality in forest ecosystems.The results of this study provide additional evidence to support the vegetation quantity and mass ratio hypotheses in forest ecosystems. 展开更多
关键词 Biodiversity and ecosystem multifunctionality Biomass functional traits Mass ratio effect Niche complementarity effect Vegetation quantity effect
下载PDF
Functional and phylogenetic structures of pheasants in China
20
作者 Hongyan Yao Pengcheng Wang +4 位作者 Nan Wang Philip J.K.McGowan Xingfeng Si Jianqiang Li Jiliang Xu 《Avian Research》 SCIE CSCD 2022年第3期229-238,共10页
Biodiversity has been subjected to increasing anthropogenic pressures.It is critical to understand the different processes that govern community assembly and species coexistence under biogeographic processes and anthr... Biodiversity has been subjected to increasing anthropogenic pressures.It is critical to understand the different processes that govern community assembly and species coexistence under biogeographic processes and anthropogenic events.Pheasants(Aves:Phasianidae)are highly threatened birds and China supports the richest pheasant species worldwide.Unravelling the spatial patterns and underlying factors associated with multidimensional biodiversity of species richness(SR),functional diversity(FD),and phylogenetic diversity(PD)of pheasants in China is helpful to understand not only the processes that govern pheasant community assembly and species coexistence,but also pheasant biodiversity conservation.We used a total of 45 pheasant species in China and analyzed the SR,FD,PD,and functional and phylogenetic structures by integrating species distribution maps,functional traits and phylogenies based on 50 km×50 km grid cells.We further used simultaneous autoregressive(SAR)models to explore the factors that determined these patterns.The southern Qinghai-Tibetan Plateau(QTP),Hengduan Mountains,southwestern Mountains,the east of the Qilian Mountains,the Qinling,southern China displayed higher SR,FD,and PD,which were determined by elevation,habitat heterogeneity,temperature seasonality,and vegetation cover.Elevation primarily determined the functional and phylogenetic structures of the pheasant communities.Assemblages in the highlands were marked by functional and phylogenetic clustering,particularly in the QTP,whereas the lowlands in eastern China comprised community overdispersion.Clustered pheasant assemblages were composed of young lineages.Patterns of functional and phylogenetic structures and richness-controlled functional and phylogenetic diversity differed between regions,suggesting that phylogenetic structures are not a good proxy for identifying functional structures.We revealed the significant role of elevation in pheasant community assemblages in China.Highlands interacted with community clustering,whereas lowlands interacted with overdispersion,supporting the environmental filtering hypothesis.Biogeographical drivers other than anthropogenic factor determined biodiversity of pheasants at the present scale of China.This study provides complementary background resources for multi-dimensional pheasant biodiversity and provides insights into avian biodiversity patterns in China. 展开更多
关键词 China Community assembly Environmental filtering functional traits PHEASANTS PHYLOGENY Species richness
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部