期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function
1
作者 Xiang Ren Tan Mary C.Stephenson +4 位作者 Sharifah Badriyah Alhadad Kelvin W.Z.Loh Tuck Wah Soong Jason K.W.Lee Ivan C.C.Low 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期233-244,共12页
Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stres... Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stress affects brain physiology and function.Methods:Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures(T_(re))attained 39.5℃,inducing exertional or passive hyperthermia,respectively.In a separate trial,blended ice was ingested before and during exercise as a cooling strategy.Data were compared to a control condition with seated rest(normothermic).Brain temperature(T_(br)),cerebral perfusion,and task-based brain activity were assessed using magnetic resonance imaging techniques.Results:T_(br)in motor cortex was found to be tightly regulated at rest(37.3℃±0.4℃(mean±SD))despite fluctuations in T_(re).With the development of hyperthermia,T_(br)increases and dovetails with the rising T_(re).Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks,implying a reduced central motor drive in hyperthermic participants(T_(re)=38.5℃±0.1℃).Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia.Executive function was poorer under a passive hyperthermic state,and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex.Conversely,ingestion of blended ice before and during exercise alleviated the rise in both T_(re)and T_(bc)and mitigated heat-related neural perturbations.Conclusion:Severe heat exposure elevates T_(br),disrupts motor cortical activity and executive function,and this can lead to impairment of physical and cognitive performance. 展开更多
关键词 Brain functional activity COGNITION Heat stress HYPERTHERMIA Motor function
下载PDF
Interpretation and characterization of rate of penetration intelligent prediction model
2
作者 Zhi-Jun Pei Xian-Zhi Song +3 位作者 Hai-Tao Wang Yi-Qi Shi Shou-Ceng Tian Gen-Sheng Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期582-596,共15页
Accurate prediction of the rate of penetration(ROP)is significant for drilling optimization.While the intelligent ROP prediction model based on fully connected neural networks(FNN)outperforms traditional ROP equations... Accurate prediction of the rate of penetration(ROP)is significant for drilling optimization.While the intelligent ROP prediction model based on fully connected neural networks(FNN)outperforms traditional ROP equations and machine learning algorithms,its lack of interpretability undermines its credibility.This study proposes a novel interpretation and characterization method for the FNN ROP prediction model using the Rectified Linear Unit(ReLU)activation function.By leveraging the derivative of the ReLU function,the FNN function calculation process is transformed into vector operations.The FNN model is linearly characterized through further simplification,enabling its interpretation and analysis.The proposed method is applied in ROP prediction scenarios using drilling data from three vertical wells in the Tarim Oilfield.The results demonstrate that the FNN ROP prediction model with ReLU as the activation function performs exceptionally well.The relative activation frequency curve of hidden layer neurons aids in analyzing the overfitting of the FNN ROP model and determining drilling data similarity.In the well sections with similar drilling data,averaging the weight parameters enables linear characterization of the FNN ROP prediction model,leading to the establishment of a corresponding linear representation equation.Furthermore,the quantitative analysis of each feature's influence on ROP facilitates the proposal of drilling parameter optimization schemes for the current well section.The established linear characterization equation exhibits high precision,strong stability,and adaptability through the application and validation across multiple well sections. 展开更多
关键词 Fully connected neural network Explainable artificial intelligence Rate of penetration ReLU active function Deep learning Machine learning
下载PDF
Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids
3
作者 Haojie Lian Jiaqi Wang +4 位作者 Leilei Chen Shengze Li Ruochen Cao Qingyuan Hu Peiyun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1143-1163,共21页
This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from2Dimages.This approach reconstructs color and density fields from 2D images using Neural Radi... This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from2Dimages.This approach reconstructs color and density fields from 2D images using Neural Radiance Field(NeRF)and improves image quality using frequency regularization.The NeRF model is obtained via joint training ofmultiple artificial neural networks,whereby the expectation and standard deviation of density fields and RGB values can be evaluated for each pixel.In addition,customized physics-informed neural network(PINN)with residual blocks and two-layer activation functions are utilized to input the density fields of the NeRF into Navier-Stokes equations and convection-diffusion equations to reconstruct the velocity field.The velocity uncertainties are also evaluated through ensemble learning.The effectiveness of the proposed algorithm is demonstrated through numerical examples.The presentmethod is an important step towards downstream tasks such as reliability analysis and robust optimization in engineering design. 展开更多
关键词 Uncertainty quantification neural radiance field physics-informed neural network frequency regularization twolayer activation function ensemble learning
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
4
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Large-scale self-normalizing neural networks
5
作者 Zhaodong Chen Weiqin Zhao +4 位作者 Lei Deng Yufei Ding Qinghao Wen Guoqi Li Yuan Xie 《Journal of Automation and Intelligence》 2024年第2期101-110,共10页
Self-normalizing neural networks(SNN)regulate the activation and gradient flows through activation functions with the self-normalization property.As SNNs do not rely on norms computed from minibatches,they are more fr... Self-normalizing neural networks(SNN)regulate the activation and gradient flows through activation functions with the self-normalization property.As SNNs do not rely on norms computed from minibatches,they are more friendly to data parallelism,kernel fusion,and emerging architectures such as ReRAM-based accelerators.However,existing SNNs have mainly demonstrated their effectiveness on toy datasets and fall short in accuracy when dealing with large-scale tasks like ImageNet.They lack the strong normalization,regularization,and expression power required for wider,deeper models and larger-scale tasks.To enhance the normalization strength,this paper introduces a comprehensive and practical definition of the self-normalization property in terms of the stability and attractiveness of the statistical fixed points.It is comprehensive as it jointly considers all the fixed points used by existing studies:the first and second moment of forward activation and the expected Frobenius norm of backward gradient.The practicality comes from the analytical equations provided by our paper to assess the stability and attractiveness of each fixed point,which are derived from theoretical analysis of the forward and backward signals.The proposed definition is applied to a meta activation function inspired by prior research,leading to a stronger self-normalizing activation function named‘‘bi-scaled exponential linear unit with backward standardized’’(bSELU-BSTD).We provide both theoretical and empirical evidence to show that it is superior to existing studies.To enhance the regularization and expression power,we further propose scaled-Mixup and channel-wise scale&shift.With these three techniques,our approach achieves 75.23%top-1 accuracy on the ImageNet with Conv MobileNet V1,surpassing the performance of existing self-normalizing activation functions.To the best of our knowledge,this is the first SNN that achieves comparable accuracy to batch normalization on ImageNet. 展开更多
关键词 Self-normalizing neural network Mean-field theory Block dynamical isometry Activation function
下载PDF
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil 被引量:5
6
作者 LI Juan LI Yan-ting +3 位作者 YANG Xiang-dong ZHANG Jian-jun LIN Zhi-an ZHAO Bing-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2500-2511,共12页
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ... Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource. 展开更多
关键词 long-term fertilization regimes organic amendment soil microbial community structure microbial functional metabolic activity carbon substrate utilization
下载PDF
Altered intrinsic functional connectivity of the primary visual cortex in youth patients with comitant exotropia: a resting state fMRI study 被引量:11
7
作者 Pei-Wen Zhu Xin Huang +5 位作者 Lei Ye Nan Jiang Yu-Lin Zhong Qing Yuan Fu-Qing Zhou Yi Shao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第4期668-673,共6页
AIM: To evaluate the differences in the functional connectivity(FC) of the primary visual cortex(V1) between the youth comitant exotropia(CE) patients and health subjects using resting functional magnetic reson... AIM: To evaluate the differences in the functional connectivity(FC) of the primary visual cortex(V1) between the youth comitant exotropia(CE) patients and health subjects using resting functional magnetic resonance imaging(f MRI) data.METHODS: Totally, 32 CEs(25 males and 7 females) and 32 healthy control subjects(HCs)(25 males and 7 females) were enrolled in the study and underwent the MRI scanning. Two-sample t-test was used to examine differences in FC maps between the CE patients and HCs. RESULTS: The CE patients showed significantly less FC between the left brodmann area(BA17) and left lingual gyrus/cerebellum posterior lobe, right middle occipital gyrus, left precentral gyrus/postcentral gyrus and right inferior parietal lobule/postcentral gyrus. Meanwhile, CE patients showed significantly less FC between right BA17 and right middle occipital gyrus(BA19, 37).CONCLUSION: Our findings show that CE involves abnormal FC in primary visual cortex in many regions, which may underlie the pathologic mechanism of impaired fusion and stereoscopic vision in CEs. 展开更多
关键词 comitant exotropia functional connectivity primary visual cortex spontaneous activity
下载PDF
Evidence of cortical reorganization of language networks after stroke with subacute Broca's aphasia:a blood oxygenation level dependent-functional magnetic resonance imaging study 被引量:8
8
作者 Wei-hong Qiu Hui-xiang Wu +7 位作者 Qing-lu Yang Zhuang Kang Zhao-cong Chen Kui Li Guo-rong Qiu Chun-qing Xie Gui-fang Wan Shao-qiong Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期109-117,共9页
Aphasia is an acquired language disorder that is a common consequence of stroke.The pathogenesis of the disease is not fully understood,and as a result,current treatment options are not satisfactory.Here,we used blood... Aphasia is an acquired language disorder that is a common consequence of stroke.The pathogenesis of the disease is not fully understood,and as a result,current treatment options are not satisfactory.Here,we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke.Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language.The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults.The activation frequency,volumes,and intensity in the regions related to language,such as the left inferior frontal gyrus(Broca's area),the left superior temporal gyrus,and the right inferior frontal gyrus(the mirror region of Broca's area),were lower in patients compared with healthy adults.In contrast,activation in the right superior temporal gyrus,the bilateral superior parietal lobule,and the left inferior temporal gyrus was stronger in patients compared with healthy controls.These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas. 展开更多
关键词 nerve regeneration functional magnetic resonance imaging cortical functional connectivity language regions neuroplasticity Perisylvian language regions brain activation right hemisphere picture-naming task neural regeneration
下载PDF
Botulinum toxin type A plus rehabilitative training for improving the motor function of the upper limbs and activities of daily life in patients with stroke and brain injury 被引量:1
9
作者 Fei Guo Wei Yue Li Ren Yumiao Zhang Jing Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第9期859-861,共3页
BACKGROUND: Botulinum toxin type A (BTX-A) is mostly to be used to treat various diseases of motor disorders, whereas its effect on muscle spasm after stroke and brain injury needs further observation. OBJECTIVE: To o... BACKGROUND: Botulinum toxin type A (BTX-A) is mostly to be used to treat various diseases of motor disorders, whereas its effect on muscle spasm after stroke and brain injury needs further observation. OBJECTIVE: To observe the effect of BTX-A plus rehabilitative training on treating muscle spasm after stroke and brain injury. DESIGN: A randomized controlled observation. SETTINGS: Department of Rehabilitation, Department of Neurology and Department of Neurosurgery, the Second Hospital of Hebei Medical University. PARTICIPANTS: Sixty inpatients with brain injury and stroke were selected from the Department of Rehabilitation, Department of Neurology and Department of Neurosurgery, the Second Hospital of Hebei Medical University from January 2001 to August 2006. They were all confirmed by CT and MRI, and had obvious increase of spastic muscle strength in upper limbs, their Ashworth grades were grade 2 or above. The patients were randomly divided into treatment group (n =30) and control group (n =30). METHODS: ① Patients in the treatment group undertook comprehensive rehabilitative trainings, and they were administrated with domestic BTX-A, which was provided by Lanzhou Institute of Biological Products, Ministry of Health (S10970037), and the muscles of flexion spasm were selected for upper limbs, 20-25 IU for each site. ② Patients in the treatment group were assessed before injection and at 1 and 2 weeks, 1 and 3 months after injection respectively, and those in the control group were assessed at corresponding time points. The recovery of muscle spasm was assessed by modified Ashworth scale (MAS, grade 0-Ⅳ; Grade 0 for without increase of muscle strength; Grade Ⅳ for rigidity at passive flexion and extension); The recovery of motor function of the upper limbs was evaluated with Fugl-Meyer Assessment (FMA, total score was 226 points, including 100 for exercise, 14 for balance, 24 for sense, 44 for joint motion, 44 for pain and 66 for upper limb); The ADL were evaluated with Barthel index, the total score was 100 points, 60 for mild dysfunction, 60-41 for moderate dysfunction, < 40 for severe dysfunction). MAIN OUTCOME MEASURES: Changes of MAS grade, FMA scores and Barthel index before and after BTX-A injection. RESULTS: All the 60 patients with brain injury and stroke were involved in the analysis of results. ① FMA scores of upper limbs: The FMA score in the treatment group at 2 weeks after treatment was higher than that before treatment [(14.98±10.14), (13.10±9.28) points, P < 0.05], whereas there was no significant difference at corresponding time point in the control group. The FMA scores at 1 and 3 months in the treatment group [(23.36±10.69), (35.36±11.36) points] were higher than those in the control group [(20.55±10.22), (30.33±10.96) points, P < 0.01]. ② MAS grades of upper limbs: There were obviously fewer cases of grade Ⅲ in MAS at 2 weeks after treatment than before treatment in the treatment group (0, 9 cases, P < 0.05), whereas there was no obvious difference in the control group. There were obviously fewer cases of grade Ⅲ in MAS at 2 weeks and 1 month after treatment in the treatment group (0, 0 case) than the control group (5, 2 cases, P < 0.01). ③ Barthel index of upper limbs: The Barthel index at 2 weeks after treatment was higher than that before treatment in the treatment group [(30.36±22.25), (28.22±26.21) points, P < 0.05], whereas there was no significant difference in the control group. The Barthel indexes at 1 and 3 months after treatment in the treatment group were obviously higher than those in the control group [(20.55±10.22), (30.33±10.96) points, P < 0.01]. CONCLUSION: BTX-A has obvious efficacy on decreasing muscle tension after stroke and brain injury, and relieving muscle spasm; Meanwhile, the combination with rehabilitative training can effectively ameliorate the motor function of upper limbs and ADL of the patients. 展开更多
关键词 Botulinum toxin type A plus rehabilitative training for improving the motor function of the upper limbs and activities of daily life in patients with stroke and brain injury TYPE
下载PDF
Effect of Preparation Process of Functional Polymer Active Materials on Properties of Gadolinium Ion Selective Electrode
10
作者 车吉泰 闫美兰 +1 位作者 林安 张万喜 《Journal of Rare Earths》 SCIE EI CAS CSCD 1991年第3期226-227,共2页
Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadoli... Recently we have studied the rare earth ion-selective electrodes with active materials of the func-tional polymers and found that the process chosen for the functional polymers had an effect on the propertiesof gadolinium ion selective electrode besides the effects of their structures.1.Effect of preparation process of the grafted polymers on the properties ofgadolinium ion selective electrodesThe electrode membranes which consist of functional polymers as active materials were prepared by re-action of gadolinium chloride with the radiation grafted clmer of acrlic acid and polystyrene of which 展开更多
关键词 functional polymer active materials Gadolinium ion selective electrode Grafted polymers
下载PDF
EFFECT OF STRUCTURE OF FUNCTIONAL POLYMER ACTIVE MATERIALS ON PROPERTIES OF GADOLINIUM ION SELECTIVE ELECTRODE
11
作者 车吉泰 闫美兰 张万喜 《Journal of Rare Earths》 SCIE EI CAS CSCD 1990年第3期189-193,共5页
In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- ti... In this paper,the functional polymeric active materials were prepared by the grafting copolymerization and their structure and properties were studied.The results show that the structure and properties of these ac- tive materials have the relative large effects on the properties of gadolinium ion selective electrodes. 展开更多
关键词 HDPE EFFECT OF STRUCTURE OF functional POLYMER ACTIVE MATERIALS ON PROPERTIES OF GADOLINIUM ION SELECTIVE ELECTRODE
下载PDF
Characterization and Functionalisation of Activated Carbon for the Enhancement of Enzyme Catalyst Activity
12
作者 Nassereldeen A Kabbashi Yara Hunud Abia Kadouf +3 位作者 Ibrahim Adebayo Bello Elwathig M.Saeed Lubna Mohamed Musa Nassereldeen Ahmed Kabbashi 《材料科学与工程(中英文B版)》 2021年第2期81-87,共7页
Background and objective:Activated carbon is commonly used as an immobilisation matrix due to its large surface area,making it a highly desirable matrix for use in immobilising enzymes as preparation for use on the in... Background and objective:Activated carbon is commonly used as an immobilisation matrix due to its large surface area,making it a highly desirable matrix for use in immobilising enzymes as preparation for use on the industrial scale.The objective of this research is to determine the effectiveness of different acids for functionalisation on immobilisation capacity and also to characterize the functionalized activated carbon for the functional groups present.Materials and methods:Activated carbon was functionalised with three acids(hydrochloric acid,nitric acid and sulphuric acid)along with a control sample washed with distilled water.Immobilisation capacity was calculated with hydrochloric acid functionalized activated carbon(HCl-FAC)giving the highest immobilization capacity(6.022 U/g).Characterisation of the functionalised activated carbon was conducted using FT-IR(Fourier Transform Infra-Red)spectroscopy analysis of the samples with the aim of analyzing the various functional groups present to determine the sample with distinct characteristics thus telling the degree of adsorption of lipase onto the activated carbon powder.Results:HNO3-FAC(functionalized activated carbon)showed a very distinct pattern as a larger number of surface functional groups emerged.The immobilisation on a matrix ensures thermal stability and increased reusability of the enzyme.Therefore,in this research,lipase sourced from Candida antarctica was immobilised on acid functionalised activated carbon.The best acid for functionalisation was found to be hydrochloric acid.Conclusion:Due to the very distinct patterns shown by the FT-IR spectrum of the HNO3-FAC after a fair comparison with others,it allows for a larger number of surface functional groups which will definitely enhance the stability of the enzyme lipase. 展开更多
关键词 Activated carbon CHARACTERIZATION functionalized activated carbon enzyme activity
下载PDF
Functional magnetic resonance imaging evidence for activated functional brain areas following acupoint needling in the extremities
13
《Neural Regeneration Research》 SCIE CAS CSCD 2012年第3期223-223,共1页
Totally three articles focusing on functional magnetic resonance imaging features of brain function in the activated brain regions of stroke patients undergoing acupuncture on the healthy limbs and healthy controls un... Totally three articles focusing on functional magnetic resonance imaging features of brain function in the activated brain regions of stroke patients undergoing acupuncture on the healthy limbs and healthy controls undergoing acupuncture on the lower extremities are published in three issues. We hope that our readers find these papers useful to their research. 展开更多
关键词 functional magnetic resonance imaging evidence for activated functional brain areas following acupoint needling in the extremities
下载PDF
Theoretical Study on the C-H Activation in Decarbonylation of Acetaldehyde by NiL_2(L=SO_3CH_3) Using Density Functional Theory
14
作者 刘红飞 JIA Tiekun MIN Xinmin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1170-1172,共3页
Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the react... Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the reactants, intermediates, products and transition states of the triplet ground potential energy surfaces of [Ni, O, C2, H4] were obtained at the B3LYP/6-311++G(d,p) levels in C,H,O atoms and B3LYP/ Lanl2 dz in Ni atom. It was found through our calculations that the decabonylation of acetaldehyde contains four steps including encounter complexation, C-C activation, aldehyde H-shift and nonreactive dissociation. The results revealed that C-C activation induced by Ni L2(L=SO3CH3) led to the decarbonylation of acetaldehyde. 展开更多
关键词 density functional theory decarbonylation transition state energy C-C activation
下载PDF
A Universal Activation Function for Deep Learning
15
作者 Seung-Yeon Hwang Jeong-Joon Kim 《Computers, Materials & Continua》 SCIE EI 2023年第5期3553-3569,共17页
Recently,deep learning has achieved remarkable results in fields that require human cognitive ability,learning ability,and reasoning ability.Activation functions are very important because they provide the ability of ... Recently,deep learning has achieved remarkable results in fields that require human cognitive ability,learning ability,and reasoning ability.Activation functions are very important because they provide the ability of artificial neural networks to learn complex patterns through nonlinearity.Various activation functions are being studied to solve problems such as vanishing gradients and dying nodes that may occur in the deep learning process.However,it takes a lot of time and effort for researchers to use the existing activation function in their research.Therefore,in this paper,we propose a universal activation function(UA)so that researchers can easily create and apply various activation functions and improve the performance of neural networks.UA can generate new types of activation functions as well as functions like traditional activation functions by properly adjusting three hyperparameters.The famous Convolutional Neural Network(CNN)and benchmark datasetwere used to evaluate the experimental performance of the UA proposed in this study.We compared the performance of the artificial neural network to which the traditional activation function is applied and the artificial neural network to which theUA is applied.In addition,we evaluated the performance of the new activation function generated by adjusting the hyperparameters of theUA.The experimental performance evaluation results showed that the classification performance of CNNs improved by up to 5%through the UA,although most of them showed similar performance to the traditional activation function. 展开更多
关键词 Deep learning activation function convolutional neural network benchmark datasets universal activation function
下载PDF
Impact point prediction guidance of ballistic missile in high maneuver penetration condition
16
作者 Yong Xian Le-liang Ren +3 位作者 Ya-jie Xu Shao-peng Li Wei Wu Da-qiao Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期213-230,共18页
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje... An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value. 展开更多
关键词 Ballistic missile High maneuver penetration Impact point prediction Supervised learning Online guidance Activation function
下载PDF
Convolution-Based Heterogeneous Activation Facility for Effective Machine Learning of ECG Signals
17
作者 Premanand.S Sathiya Narayanan 《Computers, Materials & Continua》 SCIE EI 2023年第10期25-45,共21页
Machine Learning(ML)and Deep Learning(DL)technologies are revolutionizing the medical domain,especially with Electrocardiogram(ECG),by providing new tools and techniques for diagnosing,treating,and preventing diseases... Machine Learning(ML)and Deep Learning(DL)technologies are revolutionizing the medical domain,especially with Electrocardiogram(ECG),by providing new tools and techniques for diagnosing,treating,and preventing diseases.However,DL architectures are computationally more demanding.In recent years,researchers have focused on combining the computationally less intensive portion of the DL architectures with ML approaches,say for example,combining the convolutional layer blocks of Convolution Neural Networks(CNNs)into ML algorithms such as Extreme Gradient Boosting(XGBoost)and K-Nearest Neighbor(KNN)resulting in CNN-XGBoost and CNN-KNN,respectively.However,these approaches are homogenous in the sense that they use a fixed Activation Function(AFs)in the sequence of convolution and pooling layers,thereby limiting the ability to capture unique features.Since various AFs are readily available and each could capture unique features,we propose a Convolutionbased Heterogeneous Activation Facility(CHAF)which uses multiple AFs in the convolution layer blocks,one for each block,with a motivation of extracting features in a better manner to improve the accuracy.The proposed CHAF approach is validated on PTB and shown to outperform the homogeneous approaches such as CNN-KNN and CNN-XGBoost.For PTB dataset,proposed CHAF-KNN has an accuracy of 99.55%and an F1 score of 99.68%in just 0.008 s,outperforming the state-of-the-art CNN-XGBoost which has an accuracy of 99.38%and an F1 score of 99.32%in 1.23 s.To validate the generality of the proposed CHAF,experiments were repeated on MIT-BIH dataset,and the proposed CHAF-KNN is shown to outperform CNN-KNN and CNN-XGBoost. 展开更多
关键词 ELECTROCARDIOGRAM convolution neural network machine learning activation function
下载PDF
Machine Learning Controller for DFIG Based Wind Conversion System
18
作者 P.Srinivasan P.Jagatheeswari 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期381-397,共17页
Renewable energy production plays a major role in satisfying electricity demand.Wind power conversion is one of the most popular renewable energy sources compared to other sources.Wind energy conversion has two major ... Renewable energy production plays a major role in satisfying electricity demand.Wind power conversion is one of the most popular renewable energy sources compared to other sources.Wind energy conversion has two major types of generators such as the Permanent Magnet Synchronous Generator(PMSG)and the Doubly Fed Induction Generator(DFIG).The maximum power tracking algo-rithm is a crucial controller,a wind energy conversion system for generating maximum power in different wind speed conditions.In this article,the DFIG wind energy conversion system was developed in Matrix Laboratory(MATLAB)and designed a machine learning(ML)algorithm for the rotor and grid side converter.The ML algorithm has been developed and trained in a MATLAB environment.There are two types of learning algorithms such as supervised and unsupervised learning.In this research supervised learning is used to power the neural networks and analysis is made for various hidden layers and activation functions.Simulation results are assessed to demonstrate the efficiency of the proposed system. 展开更多
关键词 Doubly fed induction generator machine learning CONVERTORS generators activation function
下载PDF
Gaussian PI Controller Network Classifier for Grid-Connected Renewable Energy System
19
作者 Ravi Samikannu K.Vinoth +1 位作者 Narasimha Rao Dasari Senthil Kumar Subburaj 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期983-995,共13页
Multi-port converters are considered as exceeding earlier period decade owing to function in a combination of different energy sources in a single processing unit.Renewable energy sources are playing a significant rol... Multi-port converters are considered as exceeding earlier period decade owing to function in a combination of different energy sources in a single processing unit.Renewable energy sources are playing a significant role in the modern energy system with rapid development.In renewable sources like fuel combustion and solar energy,the generated voltages change due to their environmental changes.To develop energy resources,electric power generation involved huge awareness.The power and output voltages are plays important role in our work but it not considered in the existing system.For considering the power and voltage,Gaussian PI Controller-Maxpooling Deep Convolutional Neural Network Classifier(GPIC-MDCNNC)Model is introduced for the grid-connected renewable energy system.The input information is collected from two input sources.After that,input layer transfer information to hidden layer 1 fuzzy PI is employed for controlling voltage in GPIC-MDCNNC Model.Hidden layer 1 is transferred to hidden layer 2.Gaussian activation is employed for determining the output voltage with help of the controller.At last,the output layer offers the last value in GPIC-MDCNNC Model.The designed method was confirmed using one and multiple sources by stable and unpredictable input voltages.GPIC-MDCNNC Model increases the performance of grid-connected renewable energy systems by enhanced voltage value compared with state-of-the-art works.The control technique using GPIC-MDCNNC Model increases the dynamics of hybrid energy systems connected to the grid. 展开更多
关键词 Multi-port converters renewable sources fuzzy PI controller gaussian activation function fuel cell
下载PDF
Activation Functions Effect on Fractal Coding Using Neural Networks
20
作者 Rashad A.Al-Jawfi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期957-965,共9页
Activation functions play an essential role in converting the output of the artificial neural network into nonlinear results,since without this nonlinearity,the results of the network will be less accurate.Nonlinearity... Activation functions play an essential role in converting the output of the artificial neural network into nonlinear results,since without this nonlinearity,the results of the network will be less accurate.Nonlinearity is the mission of all nonlinear functions,except for polynomials.The activation function must be dif-ferentiable for backpropagation learning.This study’s objective is to determine the best activation functions for the approximation of each fractal image.Different results have been attained using Matlab and Visual Basic programs,which indi-cate that the bounded function is more helpful than other functions.The non-lin-earity of the activation function is important when using neural networks for coding fractal images because the coefficients of the Iterated Function System are different according to the different types of fractals.The most commonly cho-sen activation function is the sigmoidal function,which produces a positive value.Other functions,such as tansh or arctan,whose values can be positive or negative depending on the network input,tend to train neural networks faster.The coding speed of the fractal image is different depending on the appropriate activation function chosen for each fractal shape.In this paper,we have provided the appro-priate activation functions for each type of system of iterated functions that help the network to identify the transactions of the system. 展开更多
关键词 Activation function fractal coding iterated function system
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部