OBJECTIVE: To sum up the treatment of brachial plexus root avulsion and the progress in functional reconstruction and rehabilitation following brachial plexus root avulsion. DATA SOURCES: A search of Medline was per...OBJECTIVE: To sum up the treatment of brachial plexus root avulsion and the progress in functional reconstruction and rehabilitation following brachial plexus root avulsion. DATA SOURCES: A search of Medline was performed to select functional reconstruction and rehabilitation following brachial plexus injury-related English articles published between January 1990 and July 2006, with key words of "brachial plexus injury, reconstruction and rehabilitation". Meanwhile, a computer-based search of CBM was carried out to select the similar Chinese articles published between January 1998 and July 2006, with key words of "brachial plexus injury, reconstruction and rehabilitation". STUDY SELECTION: The materials were checked primarily, and the literatures of functional reconstruction and rehabilitation of brachial plexus injury were selected and the full texts were retrieved. Inclusive criteria: ①Functional reconstruction following brachial plexus injury. ②Rehabilitation method of brachial plexus injury. Exclusive criteria: Reviews, repetitive study, and Meta analytical papers. DATA EXTRACTION: Forty-six literatures about functional reconstruction following brachial plexus injury were collected, and 36 of them met the inclusive criteria. DATA SYNTHESIS: Brachial plexus injury causes the complete or incomplete palsy of muscle of upper extremity. The treatment of brachial plexus is to displace not very important nerves to the distal end of very important nerve, called nerve transfer, which is an important method to treat brachial plexus injury. Postoperative rehabilitations consist of sensory training and motor functional training. It is very important to keep the initiativeness of exercise. Besides recovering peripheral nerve continuity by operation, combined treatment and accelerating neural regeneration, active motors of cerebral cortex is also the important factor to reconstruct peripheral nerve function. CONCLUSION: Consciously and actively strengthening functional exercise after operation is helpful to form cerebral plasticity and produce voluntary movements, can re-educate re-dominated muscle, obviously improves postoperative therapeutic effect and promote functional reconstruction.展开更多
Direct coaptation of contralateral C7 to the upper trunk could avoid the interposition of nerve grafts. We have successfully shortened the gap and graft lengths, and even achieved direct coaptation. However, direct re...Direct coaptation of contralateral C7 to the upper trunk could avoid the interposition of nerve grafts. We have successfully shortened the gap and graft lengths, and even achieved direct coaptation. However, direct repair can only be performed in some selected cases, and partial procedures still require autografts, which are the gold standard for repairing neurologic defects. As symptoms often occur after autografting, human acellular nerve allografts have been used to avoid concomitant symptoms. This study investigated the quality of shoulder abduction and elbow flexion following direct repair and acellular allografting to evaluate issues requiring attention for brachial plexus injury repair. Fifty-one brachial plexus injury patients in the surgical database were eligible for this retrospective study. Patients were divided into two groups according to different surgical methods. Direct repair was performed in 27 patients, while acellular nerve allografts were used to bridge the gap between the contralateral C7 nerve root and upper trunk in 24 patients. The length of the harvested contralateral C7 nerve root was measured intraoperatively. Deltoid and biceps muscle strength, and degrees of shoulder abduction and elbow flexion were examined according to the British Medical Research Council scoring system;meaningful recovery was defined as M3–M5. Lengths of anterior and posterior divisions of the contralateral C7 in the direct repair group were 7.64 ± 0.69 mm and 7.55 ± 0.69 mm, respectively, and in the acellular nerve allografts group were 6.46 ± 0.58 mm and 6.43 ± 0.59 mm, respectively. After a minimum of 4-year follow-up, meaningful recoveries of deltoid and biceps muscles in the direct repair group were 88.89% and 85.19%, respectively, while they were 70.83% and 66.67% in the acellular nerve allografts group. Time to C5/C6 reinnervation was shorter in the direct repair group compared with the acellular nerve allografts group. Direct repair facilitated the restoration of shoulder abduction and elbow flexion. Thus, if direct coaptation is not possible, use of acellular nerve allografts is a suitable option. This study was approved by the Medical Ethical Committee of the First Affiliated Hospital of Sun Yat-sen University, China (Application ID:[2017] 290) on November 14, 2017.展开更多
文摘OBJECTIVE: To sum up the treatment of brachial plexus root avulsion and the progress in functional reconstruction and rehabilitation following brachial plexus root avulsion. DATA SOURCES: A search of Medline was performed to select functional reconstruction and rehabilitation following brachial plexus injury-related English articles published between January 1990 and July 2006, with key words of "brachial plexus injury, reconstruction and rehabilitation". Meanwhile, a computer-based search of CBM was carried out to select the similar Chinese articles published between January 1998 and July 2006, with key words of "brachial plexus injury, reconstruction and rehabilitation". STUDY SELECTION: The materials were checked primarily, and the literatures of functional reconstruction and rehabilitation of brachial plexus injury were selected and the full texts were retrieved. Inclusive criteria: ①Functional reconstruction following brachial plexus injury. ②Rehabilitation method of brachial plexus injury. Exclusive criteria: Reviews, repetitive study, and Meta analytical papers. DATA EXTRACTION: Forty-six literatures about functional reconstruction following brachial plexus injury were collected, and 36 of them met the inclusive criteria. DATA SYNTHESIS: Brachial plexus injury causes the complete or incomplete palsy of muscle of upper extremity. The treatment of brachial plexus is to displace not very important nerves to the distal end of very important nerve, called nerve transfer, which is an important method to treat brachial plexus injury. Postoperative rehabilitations consist of sensory training and motor functional training. It is very important to keep the initiativeness of exercise. Besides recovering peripheral nerve continuity by operation, combined treatment and accelerating neural regeneration, active motors of cerebral cortex is also the important factor to reconstruct peripheral nerve function. CONCLUSION: Consciously and actively strengthening functional exercise after operation is helpful to form cerebral plasticity and produce voluntary movements, can re-educate re-dominated muscle, obviously improves postoperative therapeutic effect and promote functional reconstruction.
基金supported by the National Natural Science Foundation of China,No.81572130(to LQG)and 81601057(to JTY)the National Key Research and Development Plan of China,No.2016YFC1101603(to XLL)the Natural Science Foundation of Guangdong Province of China,No.2015A030310350(to JTY)
文摘Direct coaptation of contralateral C7 to the upper trunk could avoid the interposition of nerve grafts. We have successfully shortened the gap and graft lengths, and even achieved direct coaptation. However, direct repair can only be performed in some selected cases, and partial procedures still require autografts, which are the gold standard for repairing neurologic defects. As symptoms often occur after autografting, human acellular nerve allografts have been used to avoid concomitant symptoms. This study investigated the quality of shoulder abduction and elbow flexion following direct repair and acellular allografting to evaluate issues requiring attention for brachial plexus injury repair. Fifty-one brachial plexus injury patients in the surgical database were eligible for this retrospective study. Patients were divided into two groups according to different surgical methods. Direct repair was performed in 27 patients, while acellular nerve allografts were used to bridge the gap between the contralateral C7 nerve root and upper trunk in 24 patients. The length of the harvested contralateral C7 nerve root was measured intraoperatively. Deltoid and biceps muscle strength, and degrees of shoulder abduction and elbow flexion were examined according to the British Medical Research Council scoring system;meaningful recovery was defined as M3–M5. Lengths of anterior and posterior divisions of the contralateral C7 in the direct repair group were 7.64 ± 0.69 mm and 7.55 ± 0.69 mm, respectively, and in the acellular nerve allografts group were 6.46 ± 0.58 mm and 6.43 ± 0.59 mm, respectively. After a minimum of 4-year follow-up, meaningful recoveries of deltoid and biceps muscles in the direct repair group were 88.89% and 85.19%, respectively, while they were 70.83% and 66.67% in the acellular nerve allografts group. Time to C5/C6 reinnervation was shorter in the direct repair group compared with the acellular nerve allografts group. Direct repair facilitated the restoration of shoulder abduction and elbow flexion. Thus, if direct coaptation is not possible, use of acellular nerve allografts is a suitable option. This study was approved by the Medical Ethical Committee of the First Affiliated Hospital of Sun Yat-sen University, China (Application ID:[2017] 290) on November 14, 2017.