期刊文献+
共找到1,220篇文章
< 1 2 61 >
每页显示 20 50 100
Meta-analysis of electrical stimulation promoting recovery of gastrointestinal function after gynecological abdominal surgery
1
作者 Xue-Xia Huang Hui-Feng Gu +2 位作者 Ping-Hua Shen Bo-Liang Chu Ying Chen 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第11期3559-3567,共9页
BACKGROUND The effects of electrical stimulation on gastrointestinal function recovery after gynecological abdominal surgery was not clear.AIM To systematically evaluate the effects of electrical stimulation on gastro... BACKGROUND The effects of electrical stimulation on gastrointestinal function recovery after gynecological abdominal surgery was not clear.AIM To systematically evaluate the effects of electrical stimulation on gastrointestinal function recovery after gynecological abdominal surgery.METHODS The Cochrane Library,Web of Science,PubMed,ProQuest,and the Chinese bio-medical literature databases Wanfang,Weipu,and CNKI were used to search for relevant studies on controlled trials of electrical stimulation in gynecological abdominal surgery patients from self-established databases to May 2024.The RevMan software(version 5.3)was used to analyze the included literature and explore the heterogeneity of each study.RESULTS Seven controlled trials,involving 520 patients,were included.The results of meta-analysis showed that electrical stimulation could shorten the recovery time of intestinal sound after gynecological abdominal surgery[odds ratio(OR):-5.11,95%CI:-5.84 to-4.38,P<0.00001]and improve the time of first anal exhaust(OR:-1.19,95%CI:-1.38 to-0.99,P<0.00001),improved the time of first anal defecation(OR:-0.98,95%CI:-1.19 to-0.78,P<0.00001),The difference is significant.According to the funnel plot,if the scatter is symmetrical,it indicates that the funnel plot is unbiased.CONCLUSION Electrical stimulation can shorten this reduces the length of time it takes for the patient to recover from bowel sounds and also affects the time to first anal voiding and defecation to some extent,thereby promoting gas-trointestinal function recovery after gynecological abdominal surgery.The quality of the studies included in this review was poor,which may have affected the final results.It is necessary to conduct a randomized controlled study with higher quality and more samples to further confirm the promoting effect of electrical stimulation on gastrointestinal function recovery to guide clinical treatment. 展开更多
关键词 electrical stimulation GYNECOLOGY Abdominal surgery Gastrointestinal function META-ANALYSIS
下载PDF
Evaluating neuromuscular electrical stimulation for preventing and managing intensive care unit-acquired weakness:Current evidence and future directions
2
作者 Annu Lisa Kurian Brandon Lucke-Wold 《World Journal of Cardiology》 2024年第10期604-607,共4页
Intensive care unit-acquired weakness(ICU-AW)is a prevalent issue in critical care,leading to significant muscle atrophy and functional impairment.Aiming to address this,Neuromuscular Electrical Stimulation(NMES)has b... Intensive care unit-acquired weakness(ICU-AW)is a prevalent issue in critical care,leading to significant muscle atrophy and functional impairment.Aiming to address this,Neuromuscular Electrical Stimulation(NMES)has been explored as a therapy.This systematic review assesses NMES's safety and effectiveness in enhancing functional capacity and mobility in pre-and post-cardiac surgery patients.NMES was generally safe and feasible,with intervention sessions varying in frequency and duration.Improvements in muscle strength and 6-minute walking test distances were observed,particularly in preoperative settings,but postoperative benefits were inconsistent.NMES showed promise in preventing muscle loss and improving strength,although its impact on overall functional capacity remained uncertain.Challenges such as short ICU stays and body composition affecting NMES efficacy were noted.NMES also holds potential for other conditions like cerebral palsy and stroke.Further research is needed to optimize NMES protocols and better understand its full benefits in preventing ICU-AW and improving patient outcomes. 展开更多
关键词 Neuromuscular electrical stimulation Intensive care unit-acquired weakness Cardiac surgery Muscle atrophy functional capacity
下载PDF
Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction 被引量:14
3
作者 Yun Xiang Huihua Liu +3 位作者 Tiebin Yan Zhiqiang Zhuang Dongmei Jin Yuan Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第3期243-251,共9页
Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plastici- ty, we observed the effects of ... Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plastici- ty, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. 展开更多
关键词 nerve regeneration brain injury functional electrical stimulation neural precursor cells NEUROGENESIS basic fibroblast growth factor epidermal growth factor nestin stroke RATS NSFC grant neural regeneration
下载PDF
Therapeutic effectiveness of a single exercise session combined with WalkAide functional electrical stimulation in post-stroke patients:a crossover design study 被引量:3
4
作者 Viviane Rostirola Elsner Lucieli Trevizol +7 位作者 Isadora de Leon Marcos da Silva ThaynáWeiss Milena Braga Daniela Pochmann Amanda Stolzenberg Blembeel Caroline Dani Elenice Boggio 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第5期805-812,共8页
A growing body of evidence has suggested that the imbalance of epigenetic markers and oxidative stress appears to be involved in the pathophysiology and progression of stroke.Thus,strategies that modulate these biomar... A growing body of evidence has suggested that the imbalance of epigenetic markers and oxidative stress appears to be involved in the pathophysiology and progression of stroke.Thus,strategies that modulate these biomarkers might be considered targets for neuroprotection and novel therapeutic opportunities for these patients.Physical exercise has been reported to induce changes in these epigenetic markers and improve clinical outcomes in different populations.However,little is reported on this in post-stroke patients.The purpose of this study was to investigate the effect of a single exercise session with WalkAide functional electrical stimulation(FES)on cognitive performance,clinical functional parameters,oxidative stress and epigenetic modulation in post-stroke individuals.In this crossover design study,12 post-stroke individuals aged 54–72 years of either sexes were included and subjected to a single session of exercise(45 minutes)without WalkAide functional electrical stimulation(EXE alone group),followed by another single session of exercise(45 minutes)with WalkAide functional electrical stimulation(EXE+FES group).The clinical functional outcome measures,cognitive performance and blood collections for biomarker measurements were assessed pre-and post-intervention.After intervention,higher Berg Balance Scale scores were obtained in the EXE+FES group than in the EXE alone group.There was no significant difference in the Timed Up and Go test results post-intervention between EXE alone and EXE+FES groups.After intervention,a better cognitive performance was found in both groups compared with before the intervention.After intervention,the Timed Up and Go test scores were higher in the EXE+FES group than in the EXE alone group.In addition,the intervention induced lower levels of lipid peroxidation.After intervention,carbonyl level was lower,superoxide dismutase activity and superoxide dismutase/catalase activity ratio were higher in the EXE+FES group,compared with the EXE group alone.In each group,both histone deacetylase(HDAC2)and histone acetyltransferase activities were increased after intervention compared with before the intervention.These findings suggest that a single exercise session with WalkAide FES is more effective on balance ability and cognitive performance compared with conventional exercise alone in post-stroke patients.This is likely to be related to the regulation of oxidative stress markers.The present study was approved by the Research Ethics Committee of the Methodist University Center-IPA(approval No.2.423.376)on December 7,2017 and registered in the Brazilian Registry of Clinical Trials—ReBEC(RBR-9phj2q)on February 11,2019. 展开更多
关键词 COGNITION EPIGENETIC EXERCISE functional electrical stimulation functional mobility oxidative stress stroke WalkAide
下载PDF
Observation of the Effect of Gait-induced Functional Electrical Stimulation on Stroke Patients with Foot Drop
5
作者 Anqi Zhang Mengjiao Wu +3 位作者 Luxi Mao Qianhuan Zhang Bingqian Zhou Jingxin Wang 《Journal of Advances in Medicine Science》 2022年第1期12-18,共7页
Objective:To explore the effects of functional electrical stimulation and functional mid frequency electrical stimulation on lower limb function and balance function in stroke patients.Methods:20 cases of stroke patie... Objective:To explore the effects of functional electrical stimulation and functional mid frequency electrical stimulation on lower limb function and balance function in stroke patients.Methods:20 cases of stroke patients with foot drop after admission were randomly divided into the observation group and the control group,10 cases in each group.On the basis of the two groups of patients,the observation group used the gait induced functional electrical stimulation to stimulate the peroneal nerve and the pretibial muscle in the observation group.The control group used the computer medium frequency functional electrical stimulation to stimulate the peroneal nerve and the anterior tibial muscle for 2 weeks.Before and after treatment,the lower extremity simple Fugl-Meyer scale(FMA),the Berg balance scale(BBS)and the improved Ashworth scale were evaluated respectively,and the comparative analysis was carried out in the group and between the groups.Results:After 2 weeks of treatment,the scores of FMA and BBS in the two groups were significantly higher than those before the treatment(P<0.05),and the scores of FMA and BBS in the observation group were higher than those in the control group(P<0.05),and the flexor muscle tension of the ankle plantar flexor muscle of the observed group was lower than that of the control group(P<0.05).Conclusions:Exercise therapy combined with gait induced functional electrical stimulation or computer intermediate frequency functional electrical stimulation can significantly improve lower limb function and balance function in patients with ptosis,and the therapeutic effect of functional electrical stimulation combined with gait is better. 展开更多
关键词 Foot drop functional electrical stimulation Lower limb function Balance function
下载PDF
A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients 被引量:4
6
作者 Zonghao Huang Zhigong Wang +3 位作者 Xiaoying Lv Yuxuan Zhou Haipeng Wang Sihao Zong 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第23期2102-2110,共9页
Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affe... Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, muki-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. 展开更多
关键词 nerve regeneration STROKE motor function REHABILITATION functional electrical stimulation surface electromyography stimulator circuit neural regeneration
下载PDF
Rebuilding motor function of the spinal cord based on functional electrical stimulation 被引量:3
7
作者 Xiao-yan Shen Wei Du +1 位作者 Wei Huang Yi Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第8期1327-1332,共6页
Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience.The function of the neural pathway under the damaged sites can be rebuilt using functio... Rebuilding the damaged motor function caused by spinal cord injury is one of the most serious challenges in clinical neuroscience.The function of the neural pathway under the damaged sites can be rebuilt using functional electrical stimulation technology.In this study,the locations of motor function sites in the lumbosacral spinal cord were determined with functional electrical stimulation technology.A three-dimensional map of the lumbosacral spinal cord comprising the relationship between the motor function sites and the corresponding muscle was drawn.Based on the individual experimental parameters and normalized coordinates of the motor function sites,the motor function sites that control a certain muscle were calculated.Phasing pulse sequences were delivered to the determined motor function sites in the spinal cord and hip extension,hip flexion,ankle plantarflexion,and ankle dorsiflexion movements were successfully achieved.The results show that the map of the spinal cord motor function sites was valid.This map can provide guidance for the selection of electrical stimulation sites during the rebuilding of motor function after spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury functional electrical stimulation rebuilding motor function movement control spinal cord lumbosacral spinal cord motor function sites hip extension movement hip flexion movement ankle plantarflexion ankle dorsiflexion neural regeneration
下载PDF
Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method 被引量:5
8
作者 Hai-peng Wang Zheng-yang Bi +3 位作者 Yang Zhou Yu-xuan Zhou Zhi-gong Wang Xiao-ying Lv 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期133-142,共10页
Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor functio... Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method.Through a series of novel design concepts,including the integration of a detecting circuit and an analog-to-digital converter,a miniaturized functional electrical stimulation circuit technique,a low-power super-regeneration chip for wireless receiving,and two wearable armbands,a prototype system has been established with reduced size,power,and overall cost.Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects,the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy.Test results showed that wrist flexion/extension,hand grasp,and finger extension could be reproduced with high accuracy and low latency.This system can build a bridge of information transmission between healthy limbs and paralyzed limbs,effectively improve voluntary participation of hemiplegic patients,and elevate efficiency of rehabilitation training. 展开更多
关键词 nerve regeneration functional electrical stimulation logistic regression rehabilitation of upper-limb hemiplegia electromyography control wearable device stroke frequency-modulation stimulation hand motion circuit and system real-time neural regeneration
下载PDF
A Survey of Lower Limb Rehabilitation Systems and Algorithms Based on Functional Electrical Stimulation 被引量:1
9
作者 Mingxu Sun Xueyan Wu Qi Liu 《Computers, Materials & Continua》 SCIE EI 2020年第1期281-292,共12页
Functional electrical stimulation is a method of repairing a dysfunctional limb in a stroke patient by using low-intensity electrical stimulation.Currently,it is widely used in smart medical treatment for limb rehabil... Functional electrical stimulation is a method of repairing a dysfunctional limb in a stroke patient by using low-intensity electrical stimulation.Currently,it is widely used in smart medical treatment for limb rehabilitation in stroke patients.In this paper,the development of FES systems is sorted out and analyzed in a time order.Then,the progress of functional electrical stimulation in the field of rehabilitation is reviewed in details in two aspects,i.e.,system development and algorithm progress.In the system aspect,the development of the first FES control and stimulation system,the core of the lower limb-based neuroprosthesis system and the system based on brain-computer interface are introduced.The algorithm optimization for control strategy is introduced in the algorithm.Asynchronous stimulation to prolong the function time of the lower limbs and a method to improve the robustness of knee joint modeling using neural networks.Representative applications in each of these aspects have been investigated and analyzed. 展开更多
关键词 functional electrical stimulation lower limb systems ALGORITHMS REHABILITATION
下载PDF
Low-Power CMOS IC for Function Electrical Stimulation of Nerves 被引量:1
10
作者 李文渊 王志功 张震宇 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第3期393-397,共5页
A low-power IC for function electrical stimulation (FES) of nerves is designed for an implantable system and fabricated in CSMC's 0.6μm CMOS technology. The IC can be used for stimulating animals' spinal nerve bu... A low-power IC for function electrical stimulation (FES) of nerves is designed for an implantable system and fabricated in CSMC's 0.6μm CMOS technology. The IC can be used for stimulating animals' spinal nerve bundles and other nerves connected with a cuff type electrode. It consists of a pre-amplifier,a main amplifier,and an output stage. According to the neural signal spectrum,the bandwidth of the FES signal generator circuit is defined from 1Hz to 400kHz. The gain of the circuit is about 66dB with an output impedance of 900. The 1C can function under a single supply voltage of 3-5V. A rail-to-rail output stage helps to use the coupled power efficiently. The measured time domain performance shows that the bandwidth and the gain of the IC agree with the design. The power consumption is lower than 6mW. 展开更多
关键词 neural signal CMOS function electrical stimulation low power NERVE
下载PDF
Novel Walking Stability-Based Gait Recognition Method for Functional Electrical Stimulation System Control
11
作者 明东 万柏坤 +4 位作者 胡勇 汪曣 王威杰 吴英华 陆瓞骥 《Transactions of Tianjin University》 EI CAS 2007年第2期93-97,共5页
Gait recognition is the key question of functional electrical stimulation (FES) system control for paraplegic walking. A new risk-tendency-graph (RTG) method was proposed to recognize the stability information in FES-... Gait recognition is the key question of functional electrical stimulation (FES) system control for paraplegic walking. A new risk-tendency-graph (RTG) method was proposed to recognize the stability information in FES-assisted walking gait. The main instrument was a specialized walker dynamometer system based on a multi-channel strain-gauge bridge network fixed on the walker frame. During walking process, this system collected the reaction forces between patient's upper extremities and walker and converted them into RTG morphologic curves of dynamic gait stability in temporal and spatial domains. To demonstrate the potential usefulness of RTG, preliminary clinical trials were done with paraplegic patients. The gait stability levels of two walking cases with 4- and 12-week FES training from one subject were quantified (0.43 and 0.19) from the results of temporal and spatial RTG. Relevant instable phases in gait cycle and dangerous inclinations of patient's body during walking process were also brought forward. In conclusion, the new RTG method is practical for distinguishing more useful gait stability information for FES system control. 展开更多
关键词 gait recognition functional electrical stimulation parapegic walking risk-tendency-graph
下载PDF
Transcutaneous electrical acupoint stimulation in adult patients receiving gastrectomy/colorectal resection:A randomized controlled trial
12
作者 Yuan-Tao Hou Yuan-Yuan Pan +16 位作者 Lei Wan Wen-Sheng Zhao Ying Luo Qi Yan Yi Zhang Wei-Xin Zhang Yun-Chang Mo Lu-Ping Huang Qin-Xue Dai Dan-Yun Jia Ai-Ming Yang Hai-Yan An An-Shi Wu Ming Tian Jian-Qiao Fang Jun-Lu Wang Yi Feng 《World Journal of Gastrointestinal Surgery》 SCIE 2023年第7期1474-1484,共11页
BACKGROUND Acupuncture promotes the recovery of gastrointestinal function and provides analgesia after major abdominal surgery.The effects of transcutaneous electrical acupoint stimulation(TEAS)remain unclear.AIM To e... BACKGROUND Acupuncture promotes the recovery of gastrointestinal function and provides analgesia after major abdominal surgery.The effects of transcutaneous electrical acupoint stimulation(TEAS)remain unclear.AIM To explore the potential effects of TEAS on the recovery of gastrointestinal function after gastrectomy and colorectal resection.METHODS Patients scheduled for gastrectomy or colorectal resection were randomized at a 2:3:3:2 ratio to receive:(1)TEAS at maximum tolerable current for 30 min immediately prior to anesthesia induction and for the entire duration of surgery,plus two 30-min daily sessions for 3 consecutive days after surgery(perioperative TEAS group);(2)Preoperative and intraoperative TEAS only;(3)Preoperative and postoperative TEAS only;or(4)Sham stimulation.The primary outcome was the time from the end of surgery to the first bowel sound.RESULTS In total,441 patients were randomized;405 patients(58.4±10.2 years of age;247 males)received the planned surgery.The time to the first bowel sounds did not differ among the four groups(P=0.90;log-rank test).On postoperative day 1,the rest pain scores differed significantly among the four groups(P=0.04;Kruskal–Wallis test).Post hoc comparison using the Bonferroni test showed lower pain scores in the perioperative TEAS group(1.4±1.2)than in the sham sti-mulation group(1.7±1.1;P=0.04).Surgical complications did not differ among the four groups.CONCLUSION TEAS provided analgesic effects in adult patients undergoing major abdominal surgery,and it can be added to clinical practice as a means of accelerating postoperative rehabilitation of these patients. 展开更多
关键词 ANALGESIA Bowel function Colorectal resection GASTRECTOMY Postoperative pain Transcutaneous electrical acupoint stimulation
下载PDF
Combination therapy using evening primrose oil and electrical stimulation to improve nerve function following a crush injury of sciatic nerve in male rats 被引量:7
13
作者 Omid Badri Parviz Shahabi +4 位作者 Jalal Abdolalizadeh Mohammad Reza Alipour Hadi Veladi Mehdi Farhoudi Mohsen Sharif Zak 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期458-463,共6页
Peripheral nerve injuries with a poor prognosis are common.Evening primrose oil(EPO) has beneficial biological effects and immunomodulatory properties.Since electrical activity plays a major role in neural regenerat... Peripheral nerve injuries with a poor prognosis are common.Evening primrose oil(EPO) has beneficial biological effects and immunomodulatory properties.Since electrical activity plays a major role in neural regeneration,the present study investigated the effects of electrical stimulation(ES),combined with evening primrose oil(EPO),on sciatic nerve function after a crush injury in rats.In anesthetized rats,the sciatic nerve was crushed using small haemostatic forceps followed by ES and/or EPO treatment for 4 weeks.Functional recovery of the sciatic nerve was assessed using the sciatic functional index.Histopathological changes of gastrocnemius muscle atrophy were investigated by light microscopy.Electrophysiological changes were assessed by the nerve conduction velocity of sciatic nerves.Immunohistochemistry was used to determine the remyelination of the sciatic nerve following the interventions.EPO + ES,EPO,and ES obviously improved sciatic nerve function assessed by the sciatic functional index and nerve conduction velocity of the sciatic nerve at 28 days after operation.Expression of the peripheral nerve remyelination marker,protein zero(P0),was increased in the treatment groups at 28 days after operation.Muscle atrophy severity was decreased significantly while the nerve conduction velocity was increased significantly in rats with sciatic nerve injury in the injury + EPO + ES group than in the EPO or ES group.Totally speaking,the combined use of EPO and ES may produce an improving effect on the function of sciatic nerves injured by a crush.The increased expression of P0 may have contributed to improving the functional effects of combination therapy with EPO and ES as well as the electrophysiological and histopathological features of the injured peripheral nerve. 展开更多
关键词 nerve regeneration peripheral nerve injury sciatic nerve injury evening primrose oil electrical stimulation sciatic functional index cuff electrode neural regeneration
下载PDF
Effect of electrical stimulation on red meat Neu5Gc content reduction: a combined experimental and DFT study 被引量:1
14
作者 Aqi Xu Rui Chang Qiujin Zhu 《Food Science and Human Wellness》 SCIE 2022年第4期982-991,共10页
The hazardous substance Neu5Gc(N-glycolylneuraminic acid), which is rich in red meat, is related to chronic inflammation but is hard to eliminate. Here, electrical stimulation, as a food-friendly nonthermal processing... The hazardous substance Neu5Gc(N-glycolylneuraminic acid), which is rich in red meat, is related to chronic inflammation but is hard to eliminate. Here, electrical stimulation, as a food-friendly nonthermal processing technology, was applied to red meat samples to reduce the Neu5Gc content. To explore the Neu5Gc structure changes during this process, electronic structure parameters were evaluated, and AIM( atom in molecules) theory and DFT(density function theory) calculations were further used. The results showed that the content of Nue5Gc in red meat can be reduced by(74.24 ± 0.69)% at 120 V for 50 s, with little impact on the meat texture and color. Theoretical calculations indicated that the Neu5Gc molecule becomes very unstable under electrical stimulation by increasing the O-H bond length, reactive activity, strength of intermolecular dipole forces and total energy through reducing the values of bond dissociation energy and strength of intramolecular hydrogen bonds. Overall, this research provides an economical method to effectively control red meat safety. 展开更多
关键词 electrical stimulation Neu5Gc INFLAMMATION electronic structure Density function theory
下载PDF
Functional near-infrared spectroscopy in non-invasive neuromodulation 被引量:3
15
作者 Congcong Huo Gongcheng Xu +6 位作者 Hui Xie Tiandi Chen Guangjian Shao Jue Wang Wenhao Li Daifa Wang Zengyong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1517-1522,共6页
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson... Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases. 展开更多
关键词 brain-computer interface cerebral neural networks functional near-infrared spectroscopy neural circuit NEUROfeEDBACK neurological diseases NEUROMODULATION non-invasive brain stimulation transcranial electrical stimulation transcranial electrical stimulation
下载PDF
The Effect of Aging on Erectile Function Induced by Apomorphine and Electric Field Stimulation to Rat
16
作者 李铮 郑松 +2 位作者 向祖琼 刘勇 王益鑫 《Journal of Reproduction and Contraception》 CAS 2002年第1期16-21,共6页
Objective To explore the effect and mechanism of aging on erection by using rat model. Materials & Methods Forty male SD rats of 3, 9, 18 and 24 months old were divided into 4 groups equally according to thei... Objective To explore the effect and mechanism of aging on erection by using rat model. Materials & Methods Forty male SD rats of 3, 9, 18 and 24 months old were divided into 4 groups equally according to their age. Apomorphine given subcutaneously and cavernous nerve electric field stimulation was used to induce erection of rats. Results The successful erection rate, number of erection times, and intracavernous pressure (ICP) in the rats of 18 and 24 month old was significantly lower than that of 3 and 9 month old. Conclusion The erectile function in aging rats is deteriorated. The damage mechanism with aging might be related to dopaminergic system in central nerves. 展开更多
关键词 erectile function AGING APOMORPHINE electric field stimulation RAT
下载PDF
Effects of Electrical Stimulation in People with Post-Concussion Syndromes: A Pilot Study
17
作者 Yi-Ning Wu Jessica Gravel +3 位作者 Naseem Chatiwala Terrie Enis Caroline Stark Robert C. Cantu 《Health》 2018年第4期381-395,共15页
Post-concussion syndrome (PCS) is a complex disorder with various symptoms. There is limited evidence to support that any intervention enhances recovery after a concussion. This pilot study aimed to examine the effica... Post-concussion syndrome (PCS) is a complex disorder with various symptoms. There is limited evidence to support that any intervention enhances recovery after a concussion. This pilot study aimed to examine the efficacy of neck paraspinal muscles electrical stimulation (ES) in conjunction with physical therapy (PT) on reducing the severity of post concussive symptoms. Twenty-four individuals with PCS were randomly assigned to the ES group (PT + ES) or the control group (PT only). Both groups received the intervention twice a week for eight weeks. Clinical measures including the Concussion Signs/Symptoms Checklist, balance error scoring system, King-Devick test, ImPACT, and the Standardized Assessment of Concussion were used to evaluate the symptoms. We investigated the recovery rate by calculating slopes of changes over time for each participant. A changing slope was derived by linearly fitting the symptoms severity over time with the initial severity score as the intercept. Significant overall improvement was observed in both groups after the interventions. There was no significant difference seen in total symptom recovery rate between two groups (-1.49 ± 1.59 versus -1.2 ± 1.56, p = 0.32). The cognitive symptoms recovery rate of the ES group was faster than the control group (-0.5 ± 0.49 and -0.13 ± 0.46 respectively, p = 0.04). Physical therapy targeting the cervical region is beneficial for persons with PCS. Moreover, peripheral electrical stimulation on the paraspinal muscles surrounding the neck region could potentially advance the cognitive function recovery of persons with PCS. 展开更多
关键词 Post-Concussion SYNDROME COGNITIVE function Physical Therapy electrical stimulation
下载PDF
Early application of percutaneous neuromuscular electric stimulation in interfering motor function of limbs and difference in temperature of axilla of patients with ischemic stroke
18
作者 Zhenhui Jiang Siyi Yin Na Bi Xiang He Fang Qu 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第2期188-189,共2页
BACKGROUND: Temperature of axilla could be affected due to motor dysfunction of limbs and neural changes of vessel after ischemic stroke. OBJECTIVE: To observe the effect of percutaneous neuromuscular electric stimu... BACKGROUND: Temperature of axilla could be affected due to motor dysfunction of limbs and neural changes of vessel after ischemic stroke. OBJECTIVE: To observe the effect of percutaneous neuromuscular electric stimulation (PNES) on difference in temperature of axilla and analyze the relationship between function of limbs and difference in temperature of axilla. DESIGN: Randomized grouping and controlled observation SETTING: Department of Neurology, General Hospital of Shenyang Military Area Command of Chinese PLA PARTICIPANTS: Sixty patients with ischemic stroke were selected from Neurological Department of General Hospital of Shenyang Military Area Command of Chinese PLA from January to June 2003. All cases were diagnosed with clinical diagnosis criteria of ischemic stroke established by the Fourth Chinese Classification of Cerebrovasular Disease and CT examination and received neuromuscular electric stimulation (NES). Patients were randomly divided into control group and treatment group with 30 in each group. METHODS: Control group: Patients received routinely neurological therapy. Treatment group: Except routine therapy, patients suffered from NES at 48 hours after hospitalization. NMT-91 NES equipment was used to stimulated injured limbs with low frequency once 30 minutes a day in total of 10 times a course, especially extensor muscle of upper limb and flexor muscle of lower limb. Prescription of hemiplegia was internally decided by equipment with the output frequency of 200 Hz. Intensity of electric output could cause muscle contraction. The therapy needed two or three courses. Temperature of bilateral axilla was measured every day to calculate the difference with the formula of (temperature of axilla on the injured side - temperature of axilla on the healthy side). Motor function of limbs was measured with FugI-Meyer Motor Assessment (FMA) during hospitalization and at 2 and 4 hours after hospitalization. Among 90 points, upper and lower limb function was 54, equilibrium function 10, sensory function 10, and motion of joint 16. The higher the scores were, the better the function was. Correlation of data was dealt with linear correlation analysis. MAIN OUTCOME MEASURES : Assessment and correlation between difference in temperature of axilla and motor function of injured limbs during hospitalization and at 2 and 4 weeks after hospitalization. RESULTS: All 60 patients with ischemic stroke were involved in the final analysis. ① Difference in temperature: Difference of 2 and 4 weeks after hospitalization was lower than that in control group and at just hospitalization [treatment group: (0.056±0.000), (0.024±0.003) ℃; control group: (0.250±0.001), (0.131 ±0.001)℃; hospitalization; (0.513±0.001) ℃, P 〈 0.05-0,01]. ② FMA scores: Scores of 2 and 4 weeks after hospitalization were higher than those in control group and at just hospitalization [treatment group; (43.50±15.09), (67.97 ±18.21) points; control group: (33.33 ±13.54), (40.87±19.34) points; hospitalization: (26.43 ±11.87) points, P 〈 0.05-0.01]. ③ Correlation: Difference in temperature of axilla was negative correlation with FMA scores (c=- -0.255 1, P 〈 0.05). CONCLUSION: ① PNES can accelerate recovery of limb function and decrease temperature of axilla of patients with ischemic stroke. ② The lower the difference in temperature is, the better the functional recovery is. 展开更多
关键词 lim Early application of percutaneous neuromuscular electric stimulation in interfering motor function of limbs and difference in temperature of axilla of patients with ischemic stroke
下载PDF
Prolonged electrical stimulation causes no damage to sacral nerve roots in rabbits 被引量:3
19
作者 Peng Yan Xiaohong Yang +2 位作者 Xiaoyu Yang Weidong Zheng Yunbing Tan 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1217-1221,共5页
Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode b... Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root re- mains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9_10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimu- lation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation. 展开更多
关键词 nerve regeneration spinal cord injury sacral nerve root electrical stimulation anodeblock spinal cord reconstruction bladder function nerve prosthesis neural regeneration
下载PDF
肌电调制结合迭代学习控制的足下垂FES系统
20
作者 王兆轩 李玉榕 陈楷 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第4期112-120,共9页
足下垂是指由于神经控制功能障碍导致踝关节无法产生背屈以致足尖上抬不完全或不能的现象。功能性电刺激(FES)作为纠正足下垂步态的治疗方法,通过低频脉冲刺激胫骨前肌引起肌肉收缩,使踝关节产生背屈动作,达到矫正足下垂的目的。本文提... 足下垂是指由于神经控制功能障碍导致踝关节无法产生背屈以致足尖上抬不完全或不能的现象。功能性电刺激(FES)作为纠正足下垂步态的治疗方法,通过低频脉冲刺激胫骨前肌引起肌肉收缩,使踝关节产生背屈动作,达到矫正足下垂的目的。本文提出了基于肌电(EMG)调制和迭代学习控制(ILC)的FES输出强度调制方法,利用小腿角速度信号通过动态BP神经网络预测健康步态胫骨前肌肌电信号,以脚尖俯仰角作为反馈信号通过ILC输出参考肌电信号,与神经网络预测的肌电信号加权平均得到修正后的肌电信号,最后利用肌肉激活特性调制FES输出。实验表明开环肌电调制模式下的脚尖俯仰角仅有17°左右,而在闭环调制模式下,脚尖俯仰角最大角度达到了21°左右。本文设计的FES控制系统可以帮助足下垂患者进行康复训练。 展开更多
关键词 功能性电刺激 足下垂 迭代学习控制 肌电信号
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部