Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized fo...Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized for preventive care over 5 years, using detailed gait function measurements with an accelerometer-based system. Methods: Seventy individuals (17 male and 53 female) of a daycare service in Tokyo participated in a weekly exercise program, meeting 1 - 2 times. The average age of the participants at the start of the program was 81.4 years. Gait function, including gait speed, stride length, root mean square (RMS) of acceleration, gait cycle time and its standard deviation, and left-right difference in stance time, was evaluated every 6 months. Results: Gait speed and stride length improved considerably within six months of starting the exercise program, confirming an initial improvement in gait function. This suggests that regular exercise programs can maintain or improve gait function even age groups that predictably have a gradual decline in gait ability due to enhanced age. In the long term, many indicators tended to approach baseline values. However, the exercise program seemingly counteracts age-related changes in gait function and maintains a certain level of function. Conclusions: While a decline in gait ability with aging is inevitable, establishing appropriate exercise habits in late-stage older individuals may contribute to long-term maintenance of gait function.展开更多
Stroke survivors often present with abnormal gait, movement training can improve the walking performance post-stroke, and functional MRI can objectively evaluate the brain functions before and after movement training....Stroke survivors often present with abnormal gait, movement training can improve the walking performance post-stroke, and functional MRI can objectively evaluate the brain functions before and after movement training. This paper analyzes the functional MRI changes in patients with ischemic stroke after treadmill training with voluntary and passive ankle dorsiflexion. Functional MRI showed that there are some changes in some regions of patients with ischemic stroke including primary sensorimotor cortex, supplementary motor area and cingulate motor area after treadmill training. These findings suggest that treadmill training likely improves ischemic stroke patients' lower limb functions and gait performance and promotes stroke recovery by changing patients' brain plasticity; meanwhile, the novel treadmill training methods can better training effects.展开更多
The three-phase Enriched Environment(EE)paradigm has been shown to promote post-stroke functional improvement,but the neuronal mechanisms are still unclear.In this study,we applied a multimodal neuroimaging protocol c...The three-phase Enriched Environment(EE)paradigm has been shown to promote post-stroke functional improvement,but the neuronal mechanisms are still unclear.In this study,we applied a multimodal neuroimaging protocol combining magnetic resonance imaging(MRI)and positron emission tomography(PET)to examine the effects of post-ischemic EE treatment on structural and functional neuroplasticity in the bilateral sensorimotor cortex.Rats were subjected to permanent middle cerebral artery occlusion.The motor function of the rats was examined using the DigiGait test.MRI was applied to investigate the EE-induced structural modifications of the bilateral sensorimotor cortex.[^(18)F]-fluorodeoxyglucose PET was used to detect glucose metabolism.Blood oxygen level-dependent(BOLD)-functional MRI(fMRI)was used to identify the regional brain activity and functional connectivity(FC).In addition,the expression of neuroplasticity-related signaling pathways including neurotrophic factors(BDNF/CREB),axonal guidance proteins(Robo1/Slit2),and axonal growth-inhibitory proteins(NogoA/NgR)as well as downstream proteins(RhoA/ROCK)in the bilateral sensorimotor cortex were measured by Western blots.Our results showed the three-phase EE improved the walking ability.Structural T2 mapping imaging and diffusion tensor imaging demonstrated that EE benefited structure integrity in the bilateral sensorimotor cortex.PET-MRI fused images showed improved glucose metabolism in the corresponding regions after EE intervention.Specifically,the BOLD-based amplitude of low-frequency fluctuations showed that EE increased spontaneous activity in the bilateral motor cortex and ipsilateral sensory cortex.In addition,FC results showed increased sensorimotor connectivity in the ipsilateral hemisphere and increased interhemispheric motor cortical connectivity and motor cortical-thalamic connectivity following EE intervention.In addition,a strong correlation was found between increased functional connectivity and improved motor performance of limbs.Specifically,EE regulated the expression of neuroplasticity-related signaling,involving BDNF/CREB,Slit2/Robo1,as well as the axonal growth–inhibitory pathways Nogo-A/Nogo receptor and RhoA/ROCK in the bilateral sensorimotor cortex.Our results indicated that the three-phase enriched environment paradigm enhances neuronal plasticity of the bilateral sensorimotor cortex and consequently ameliorates post-stroke gait deficits.These findings might provide some new clues for the development of EE and thus facilitate the clinical translation of EE.展开更多
文摘Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized for preventive care over 5 years, using detailed gait function measurements with an accelerometer-based system. Methods: Seventy individuals (17 male and 53 female) of a daycare service in Tokyo participated in a weekly exercise program, meeting 1 - 2 times. The average age of the participants at the start of the program was 81.4 years. Gait function, including gait speed, stride length, root mean square (RMS) of acceleration, gait cycle time and its standard deviation, and left-right difference in stance time, was evaluated every 6 months. Results: Gait speed and stride length improved considerably within six months of starting the exercise program, confirming an initial improvement in gait function. This suggests that regular exercise programs can maintain or improve gait function even age groups that predictably have a gradual decline in gait ability due to enhanced age. In the long term, many indicators tended to approach baseline values. However, the exercise program seemingly counteracts age-related changes in gait function and maintains a certain level of function. Conclusions: While a decline in gait ability with aging is inevitable, establishing appropriate exercise habits in late-stage older individuals may contribute to long-term maintenance of gait function.
基金supported by the Natural Science Foundation of China,No.30973165
文摘Stroke survivors often present with abnormal gait, movement training can improve the walking performance post-stroke, and functional MRI can objectively evaluate the brain functions before and after movement training. This paper analyzes the functional MRI changes in patients with ischemic stroke after treadmill training with voluntary and passive ankle dorsiflexion. Functional MRI showed that there are some changes in some regions of patients with ischemic stroke including primary sensorimotor cortex, supplementary motor area and cingulate motor area after treadmill training. These findings suggest that treadmill training likely improves ischemic stroke patients' lower limb functions and gait performance and promotes stroke recovery by changing patients' brain plasticity; meanwhile, the novel treadmill training methods can better training effects.
基金supported by the National Natural Science Foundation of China(82174471).
文摘The three-phase Enriched Environment(EE)paradigm has been shown to promote post-stroke functional improvement,but the neuronal mechanisms are still unclear.In this study,we applied a multimodal neuroimaging protocol combining magnetic resonance imaging(MRI)and positron emission tomography(PET)to examine the effects of post-ischemic EE treatment on structural and functional neuroplasticity in the bilateral sensorimotor cortex.Rats were subjected to permanent middle cerebral artery occlusion.The motor function of the rats was examined using the DigiGait test.MRI was applied to investigate the EE-induced structural modifications of the bilateral sensorimotor cortex.[^(18)F]-fluorodeoxyglucose PET was used to detect glucose metabolism.Blood oxygen level-dependent(BOLD)-functional MRI(fMRI)was used to identify the regional brain activity and functional connectivity(FC).In addition,the expression of neuroplasticity-related signaling pathways including neurotrophic factors(BDNF/CREB),axonal guidance proteins(Robo1/Slit2),and axonal growth-inhibitory proteins(NogoA/NgR)as well as downstream proteins(RhoA/ROCK)in the bilateral sensorimotor cortex were measured by Western blots.Our results showed the three-phase EE improved the walking ability.Structural T2 mapping imaging and diffusion tensor imaging demonstrated that EE benefited structure integrity in the bilateral sensorimotor cortex.PET-MRI fused images showed improved glucose metabolism in the corresponding regions after EE intervention.Specifically,the BOLD-based amplitude of low-frequency fluctuations showed that EE increased spontaneous activity in the bilateral motor cortex and ipsilateral sensory cortex.In addition,FC results showed increased sensorimotor connectivity in the ipsilateral hemisphere and increased interhemispheric motor cortical connectivity and motor cortical-thalamic connectivity following EE intervention.In addition,a strong correlation was found between increased functional connectivity and improved motor performance of limbs.Specifically,EE regulated the expression of neuroplasticity-related signaling,involving BDNF/CREB,Slit2/Robo1,as well as the axonal growth–inhibitory pathways Nogo-A/Nogo receptor and RhoA/ROCK in the bilateral sensorimotor cortex.Our results indicated that the three-phase enriched environment paradigm enhances neuronal plasticity of the bilateral sensorimotor cortex and consequently ameliorates post-stroke gait deficits.These findings might provide some new clues for the development of EE and thus facilitate the clinical translation of EE.