Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promisi...After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.展开更多
Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depress...Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depression.In this paper,we proposed a discriminative model of multivariate pattern classification based on fNIRS signals to distinguish elderly depressed patients from healthy controls.This model used the brain activation patterns during a verbal fluency task as features of classification.Then Pseudo-Fisher Linear Discriminant Analysis was performed on the feature space to generate discriminative model.Using leave-one-out(LOO)cross-validation,our results showed a correct classification rate of 88%.The discriminative model showed its ability to identify people with elderly depression and suggested that fNIRS may be an efficient clinical tool for diagnosis of depression.This study may provide the first step for the development of neuroimaging biomarkers based on fNIRS in psychiatric disorders.展开更多
Crohn’s disease(CD)is a chronic,non-specific granulomatous inflammatory disorder that commonly affects the small intestine and is a phenotype of inflammatory bowel disease(IBD).CD is prone to relapse,and its incidenc...Crohn’s disease(CD)is a chronic,non-specific granulomatous inflammatory disorder that commonly affects the small intestine and is a phenotype of inflammatory bowel disease(IBD).CD is prone to relapse,and its incidence displays a persistent increase in developing countries.However,the pathogenesis of CD is poorly understood,with some studies emphasizing the link between CD and the intestinal microbiota.Specifically,studies point to the brain-gut-enteric microbiota axis as a key player in the occurrence and development of CD.Furthermore,investigations have shown whitematter lesions and neurologic deficits in patients with IBD.Based on these findings,brain activity changes in CD patients have been detected by blood oxygenation level dependent functional magnetic resonance imaging(BOLD-f MRI).BOLD-f MRI functions by detecting a local increase in relative blood oxygenation that results from neurotransmitter activity and thus reflects local neuronal firing rates.Therefore,biochemical concentrations of neurotransmitters or metabolites may change in corresponding brain regions of CD patients.To further study this phenomenon,brain changes of CD patients can be detected non-invasively,effectively and accurately by BOLD-f MRI combined with magnetic resonance spectroscopy(MRS).This approach can further shed light on the mechanisms of the occurrence and development of neurological CD.Overall,this paper reviews the current status and prospects on fMRI and MRS for evaluation of patients with CD based on the brain-gut-enteric microbiota axis.展开更多
Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–br...Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–brain coupling,have often used heart rate variability(HRV)metrics derived from electrocardiography(ECG)recordings as empirical measurements of sympathetic and parasympathetic activities.Functional near-infrared spectroscopy(fNIRS)is a functional brain imaging modality that is increasingly used in brain and cognition studies.The fNIRS signals contain frequency bands representing both neural activity oscillations and heartbeat rhythms.Therefore,fNIRS data acquired in neuroimaging studies can potentially provide a single-modality approach to measure task-induced responses in the brain and ANS synchronously,allowing analysis of CNS–ANS interactions.In this proof-of-concept study,fNIRS was used to record hemodynamic changes from the foreheads of 20 university students as they each played a round of multiplayer online battle arena(MOBA)game.From the fNIRS recordings,neural and heartbeat frequency bands were extracted to assess prefrontal activities and shortterm pulse rate variability(PRV),an approximation for short-term HRV,respectively.Under the experimental conditions used,fNIRS-derived PRV metrics showed good correlations with ECG-derived HRV golden standards,in terms of absolute measurements and video game playing(VGP)-related changes.It was also observed that,similar to previous studies on physical activity and exercise,the PRV metrics closely related to parasympathetic activities recovered slower than the PRV indicators of sympathetic activities after VGP.It is concluded that it is feasible to use fNIRS to monitor concurrent brain and ANS activations during online VGP,facilitating the understanding of VGP-related heart–brain coupling.展开更多
We have applied functional near-infrared spectroscopy(fNIRS)to the human forehead to distinguish different levels of mental workload on the basis of hemodynamic changes occurring in the prefrontal cortex.We report dat...We have applied functional near-infrared spectroscopy(fNIRS)to the human forehead to distinguish different levels of mental workload on the basis of hemodynamic changes occurring in the prefrontal cortex.We report data on 3 subjects from a protocol involving 3 mental workload levels based on to working memory tasks.To quantify the potential of fNIRS for mental workload discrimination,we have applied a 3-nearest neighbor classification algorithm based on the amplitude of oxyhemoglobin(HbO2)and deoxyhemoglobin(HbR)concentration changes associated with the working memory tasks.We have found classification success rates in the range of 44%-72%,which are significantly higher than the corresponding chance level(for random data)of 19.1%.This work shows the potential of fNIRS for mental workload classification,especially when more parameters(rather than just the amplitude of concentration changes used here)and more sophisticated classification algorithms(rather than the simple 3-nearest neighbor algorithm used here)are considered and optimized for this application.展开更多
It remains unclear whether language tasks in one's first (L1) or second (L2) language can cause stress responses and whether frontal, autonomic and behavioral responses to stressful tasks are correlated. In this ...It remains unclear whether language tasks in one's first (L1) or second (L2) language can cause stress responses and whether frontal, autonomic and behavioral responses to stressful tasks are correlated. In this study, we studied 22 Chinese subjects whose L2 was English and measured the cerebral blood oxygenation in their frontal lobe by using functional near-infrared spectroscopy (fNIRS) as par- ticipants engaged in a mental arithmetic task (MAT) and verbal fluency tasks (VFTs) in L1 (Chinese) and L2 (English). To examine the activated cortical areas, we estimated the channel location based on Montreal Neurological Institute (MNI) standard brain space by using a-probabilistic estimation method. We evaluated heart rate (HR) changes to analyze autonomic nervous system (ANS) functioning. We found that the MAT and VFTs induced greater increases in HR than did the control (Ctrl) task. Further- more, subjects developed greater increases in HR in the MAT and VFTt~ than they did in the VFTL1. Compared with the Ctrl task, the MAT and both VFTLland VFTL2 produced robust and widespread bi- lateral activation of the frontal cortex. Interestingly, partial correlation analysis indicated that the activity in the left inferior frontal gyrus (LIFG) [Brodmarm's area (BA) 47] was consistently correlated with the increases in HR across the three tasks (MAT, VFTL2, and VFTL1), after controlling for the performance data. The present results suggested that a VFT in L2 may be more stressful than in L1. The LIFG may affect the activation of the sympathetic system induced by stressful tasks, includin~ MATs and VFTs.展开更多
Working memory is one of the most important functions in our brain,which has been widely studied with unreal-life measured technologies.A functional near-infrared spectroscopy(fNIRS)instrument with a portable and low-...Working memory is one of the most important functions in our brain,which has been widely studied with unreal-life measured technologies.A functional near-infrared spectroscopy(fNIRS)instrument with a portable and low-cost design is developed,which is capable of providing hemodynamic measurement associated with brain function in real-life situations.Using this instrument,we performed working memory studies involved in Chinese words encoding,verbal,and spatial stem recognition,which are mainly studied with other technologies.Our results show that fNIRS can well assess working memory activities,in comparison with the reported results mainly using other methodologies.Furthermore,we find that hemodynamic change in the prefrontal cortex during all working memory tasks is highly associated with subjects’behavioral data.fNIRS is shown to be a promising alternative to the current methodologies for studying or assessing functional brain activities in natural condition.展开更多
Modeling Light propagation within human head to deduce spatial sensitivity distribution(SSD)is important for Near-infrared spectroscopy(NIRS)/imaging(NIRI)and diffuse correlation tomography.Lots of head models have be...Modeling Light propagation within human head to deduce spatial sensitivity distribution(SSD)is important for Near-infrared spectroscopy(NIRS)/imaging(NIRI)and diffuse correlation tomography.Lots of head models have been used on this issue,including layered head model,artificial simplified head model,MRI slices described head model,and visible human head model.Hereinto,visible Chinese human(VCH)head model is considered to be a most faithful presentation of anatomical structure,and has been highlighted to be employed in modeling light propagation.However,it is not practical for all researchers to use VCH head models and actually increasing number of people are using magnet resonance imaging(MRI)head models.Here,all the above head models were simulated and compared,and we focused on the effect of using di®erent head models on predictions of SSD.Our results were in line with the previous reports on the effect of cerebral cortex folding geometry.Moreover,the in fluence on SSD increases with thefidelity of head models.And surprisingly,the SSD percentages in scalp and gray matter(region of interest)in MRI head model were found to be 80%and 125%higher than in VCH head model.MRI head models induced nonignorable discrepancy in SSD estimation when compared with VCH head model.This study,as we believe,is the first to focus on comparison among full serials of head model on estimating SSD,and provided quantitative evidence for MRI head model users to calibrate their SSD estimation.展开更多
Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cogni...Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cognition,the neural mechanisms underlying low-frequency hemodynamic oscillations(LFHO)<1 Hz have not yet been fully explored.One way to examine oscillatory neural dynamics is to use a facial expression(FE)paradigm to induce steady-state visual evoked potentials(SSVEPs),which has been used in electroencephalography studies of high-frequency brain oscillation activity.In this study,LFHO during SSVEP-inducing periodic flickering stimuli presentation were inspected using functional near-infrared spectroscopy(fNIRS),in which hemodynamic responses in the prefrontal cortex were recorded while participants were passively viewing dynamic FEs flickering at 0.2 Hz.The fast Fourier analysis results demonstrated that the power exhibited monochronic peaks at 0.2 Hz across all channels,indicating that the periodic events successfully elicited LFHO in the prefrontal cortex.More importantly,measurement of LFHO can effectively distinguish the brain activation difference between different cognitive conditions,with happy FE presentation showing greater LFHO power than neutral FE presentation.These results demonstrate that stimuli flashing at a given frequency can induce LFHO in the prefrontal cortex,which provides new insights into the cognitive mechanisms involved in slow oscillation.展开更多
The purpose of this study was to investigate neuronal mechanisms active during the percep-tion of forward postural limits in a standing po-sition and to specify fall-related brain activity using optical functional nea...The purpose of this study was to investigate neuronal mechanisms active during the percep-tion of forward postural limits in a standing po-sition and to specify fall-related brain activity using optical functional near-infrared spectros-copy. The study group included six right-handed, healthy female volunteers (range: 19, 20 years). The optical imaging device comprised 16 opto-des designed to provide 24-channel recording of changes in hemoglobin oxygenation. We meas-ured the changes of oxygenated hemoglobin levels in the frontal region when subjects per-ceived reachability in a standing position. Com- pared with those in other regions, the oxygen-ated hemoglobin levels in the right frontal region compatible with the right prefrontal cortex sig-nificantly increased. This result suggests that brain activities in the right prefrontal cortex are related to perception of reachability. Overesti-mation of postural limits has been reported as one of the risk factor for falling. This overesti-mation might be induced by dysfunction in the prefrontal cortex, resulting in a failure to inhibit a motor program that would have caused a loss of balance in reaching. Activation of the right prefrontal cortex may be a key factor for pre-venting accidental falls in the elderly and in pa-tients with neurological disorders.展开更多
We characterize the hemodynamic response changes near-infrared spectroscopy (NIRS) during the presentation of in the main olfactory bulb (MOB) of anesthetized rats with three different odorants: (i) plain air a...We characterize the hemodynamic response changes near-infrared spectroscopy (NIRS) during the presentation of in the main olfactory bulb (MOB) of anesthetized rats with three different odorants: (i) plain air as a reference (Blank), (ii) 2-heptanone (HEP), and (iii) isopropylbenzene (Ib). Odorants generate different changes in the concentrations of oxy- hemoglobin. Our results suggest that NIRS technology might be useful in discriminating various odorants in a non-invasive manner using animals with a superb olfactory system.展开更多
A novel approach to image hemoglobin concentration(△Dhb) and oxygen saturation (△Doxy) of breast tissue is presented. The scenograph of dual-wavelength (760 and 850 nm) near infrared lights through breast tiss...A novel approach to image hemoglobin concentration(△Dhb) and oxygen saturation (△Doxy) of breast tissue is presented. The scenograph of dual-wavelength (760 and 850 nm) near infrared lights through breast tissue is acquired by high sensitive charge coupled device (CCD) camera. The evaluation criterion of the difference of △Dhh and △Doxy between detected and referenced breast tissue can be obtained by a calculation formula without complicate caculation. This approach is applied to clinic detection in breast tissue. The ongoing clinical experiments indicate that malignant tumor usually exhibits characterize of "higher △Dhb and lower △Doxy", while benign lesion often shows "lower △Dhb and higher △Doxy" or other characters. So it is useful to assist the diagnosis of breast disease.展开更多
Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was ap...Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice.展开更多
We have examined ten human subjects with a previously developed instrument for near-infrared diffuse spectral imaging of the female breast.The instrument is based on a tandem,planar scan of two collinear optical fiber...We have examined ten human subjects with a previously developed instrument for near-infrared diffuse spectral imaging of the female breast.The instrument is based on a tandem,planar scan of two collinear optical fibers(one for illumination and one for collection)to image a gently compressed breast in a transmission geometry.The optical data collection features a spatial sampling of 25 points/cm2 over the whole breast,and a spectral sampling of 2 points/nm in the 650-900nm wavelength range.Of the ten human subjects examined,eight are healthy subjects and two are cancer patients with unilateral invasive ductal carcinoma and ductal carcinoma in situ,respectively.For each subject,we generate second-derivative images that identify a network of highly absorbing structures in the breast that we assign to blood vessels.A previously developed paired-wavelength spectral method assigns oxygenation values to the absorbing structures displayed in the second-derivative images.The resulting oxygenation images feature average values over the whole breast that are significantly lower in cancerous breasts(69±14%,n=2)than in healthy breasts(85±7%,n=18)(p<0.01).Furthermore,in the two patients with breast cancer,the average oxygenation values in the cancerous regions are also significantly lower than in the remainder of the breast(invasive ductal carcinoma:49±11%vs 61±16%,p<0.01;ductal carcinoma in situ:58±8%vs 77±11%,p<0.001).展开更多
Hepatic encephalopathy (HE) is a common neuropsychiatric abnormality, which complicates the course of patients with liver disease and results from hepatocellular failure and/or portosystemic shunting. The manifestat...Hepatic encephalopathy (HE) is a common neuropsychiatric abnormality, which complicates the course of patients with liver disease and results from hepatocellular failure and/or portosystemic shunting. The manifestations of HE are widely variable and involve a spectrum from mild subclinical disturbance to deep coma. Research interest has focused on the role of circulating gut-derived toxins, particularly ammonia, the development of brain swelling and changes in cerebral neurotransmitter systems that lead to global CNS depression and disordered function. Until recently the direct investigation of cerebral function has been difficult in man. However, new magnetic resonance imaging (MRI) techniques provide a non-invasive means of assessment of changes in brain volume (coregistered MRI) and impaired brain function (fMRI), while proton magnetic resonance spectroscopy (^1H MRS) detects changes in brain biochemistry, including direct measurement of cerebral osmolytes, such as myoinositol, glutamate and glutamine which govern processes intrinsic to cellular homeostasis, including the accumulation of intracellular water. The concentrations of these intracellular osmolytes alter with hyperammonaemia. MRS-detected metabolite abnormalities correlate with the severity of neuropsychiatric impairment and since MR spectra return towards normal after treatment, the technique may be of use in objective patient monitoring and in assessing the effectiveness of various treatment regimens.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
Stroke is caused by an acute focal disruption of the vasculature in the central nervous system.Neurological-related functional deficits are the most devastating consequences for stroke survi-vors.Neural signals from s...Stroke is caused by an acute focal disruption of the vasculature in the central nervous system.Neurological-related functional deficits are the most devastating consequences for stroke survi-vors.Neural signals from stroke patients can reflect the functional statuses of patients and provide insights into the neuronal recovery mechanism for functioning,which could be used as the basis for designing optimal treatment strategies.Near-infrared spectroscopy(NIRS)is a low-cost,noninvasive,easily operated neuroimage method and it is compatible with various rehabilitative programs.These advantages make NIRS an excellent candidate in research for stroke recovery.Here,we focused on the brain functions and recovery for stroke patients at stable status,conducted a systematic literature review about NIRS applications in stroke since 2000 and identified a total of 72 references through ScienceDirect and PubMed database retrieval.The NIRS studies in stroke include resting-state function and its recovery,motor function and itsrecovery,motor and cognition interference,cognitive function and its recovery,language function and its recovery,emotional function and its recovery and other applications.Based on the results of the quality assessment,we identified some study gaps from the previous research and provided suggestions for some methodological improvement in the future.The trend of NIRS gives a boost to its application in stroke,and the potential research directions for NIRS in stroke are pros-pected,including multi-center clinical research,treatment efficacy prediction research and brain-muscle coupling research.Finally,limitations of NIRS are discussed.展开更多
[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drou...[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drought resistance were selected and were classified according to their drought resistance grades determined by the Technical Specification of Identification and Evaluation for Drought Resistance in Wheat (GB/T 21127-2007). In addition, the harvested wheat seed samples were spectrally analyzed with FOSS NIRSystems5000 near-infrared spectrum analyzer for grain quality (full spectrum analyzer) and then the forecasted regression equations were established. [Result] After the establishment of a database and validation, dis- criminated functions were obtained. The determination coefficient (RSQ) and coeffi- cients of determination for cross validation (1-VR) in the discriminant function built with seed samples from water stress area were 0.846 0 and 0.781 8, respectively, which indicated that the consistency between drought resistance and spectral charac- teristics in wheat varieties was good, and there was high correlation between the near-infrared diffuse reflectance spectra of seeds and the drought resistance in wheat. [Conclusiou] Under water stress condition, it is feasible to establish a conve- nient, rapid and no-damage identification system for the drought resistance in wheat by using the near-infrared diffuse reflectance spectrum technique to scan wheat seeds.展开更多
AIM: To explore the usefulness of magnetic resonance imaging(MRI) and spectroscopy(MRS) for assessment of non-alcoholic fat liver disease(NAFLD) as compared with liver histological and metabolomics findings. METHODS: ...AIM: To explore the usefulness of magnetic resonance imaging(MRI) and spectroscopy(MRS) for assessment of non-alcoholic fat liver disease(NAFLD) as compared with liver histological and metabolomics findings. METHODS: Patients undergoing bariatric surgery following procedures involved in laparoscopic sleeve gastrectomy were recruited as a model of obesityinduced NAFLD in an observational, prospective, singlesite, cross-sectional study with a pre-set duration of 1 year. Relevant data were obtained prospectively and surrogates for inflammation, oxidative stress and lipid and glucose metabolism were obtained through standard laboratory measurements. To provide reliable data from MRI and MRS, novel procedures were designed to limit sampling variability and other sources of error using a 1.5T Signa HDx scanner and protocols acquired from the 3D or 2D Fat SAT FIESTA prescription manager. We used our previously described 1H NMRbased metabolomics assays. Data were obtained immediately before surgery and after a 12-mo period including histology of the liver and measurement of metabolites. Values from 1H NMR spectra obtained after surgery were omitted due to technical limitations.RESULTS: MRI data showed excellent correlation with the concentration of liver triglycerides, other hepatic lipid components and the histological assessment, w h i c h e xc l u d e d t h e p r e s e n c e o f n o n-a l c o h o l i c steatohepatitis(NASH). MRI was sufficient to follow up NAFLD in obese patients undergoing bariatric surgery and data suggest usefulness in other clinical situations. The information provided by MRS replicated that obtained by MRI using the-CH3 peak(0.9 ppm), the-CH2- peak(1.3 ppm, mostly triglyceride) and the-CH=CH- peak(2.2 ppm). No patient depicted NASH. After surgery all patients significantly decreased their body weight and steatosis was virtually absent even in patients with previous severe disease. Improvement was also observed in the serum concentrations of selected variables. The most relevant findings using metabolomics indicate increased levels of triglyceride and monounsaturated fatty acids in severe steatosis but those results were accompanied by a significant depletion of diglycerides, polyunsaturated fatty acids, glucose-6-phosphate and the ATP/AMP ratio. Combined data indicated the coordinated action on mitochondrial fat oxidation and glucose transport activity and may support the consideration of NAFLD as a likely mitochondrial disease. This concept may helpto explain the dissociation between excess lipid storage in adipose tissue and NAFLD and may direct the search for plasma biomarkers and novel therapeutic strategies. A limitation of our study is that data were obtained in a relatively low number of patients.CONCLUSION: MRI is sufficient to stage NAFLD in obese patients and to assess the improvement after bariatric surgery. Other data were superfluous for this purpose.展开更多
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金supported by the National Key R&D Program of China,No.2020YFC2004202(to DX).
文摘After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.
文摘Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depression.In this paper,we proposed a discriminative model of multivariate pattern classification based on fNIRS signals to distinguish elderly depressed patients from healthy controls.This model used the brain activation patterns during a verbal fluency task as features of classification.Then Pseudo-Fisher Linear Discriminant Analysis was performed on the feature space to generate discriminative model.Using leave-one-out(LOO)cross-validation,our results showed a correct classification rate of 88%.The discriminative model showed its ability to identify people with elderly depression and suggested that fNIRS may be an efficient clinical tool for diagnosis of depression.This study may provide the first step for the development of neuroimaging biomarkers based on fNIRS in psychiatric disorders.
基金the National Natural Science Foundation of China,No.81473506the Natural Science Foundation of Zhejiang Province,No.LY17H290009the Ministry of Construction,Zhejiang Province,No.WKJ-ZJ-1531
文摘Crohn’s disease(CD)is a chronic,non-specific granulomatous inflammatory disorder that commonly affects the small intestine and is a phenotype of inflammatory bowel disease(IBD).CD is prone to relapse,and its incidence displays a persistent increase in developing countries.However,the pathogenesis of CD is poorly understood,with some studies emphasizing the link between CD and the intestinal microbiota.Specifically,studies point to the brain-gut-enteric microbiota axis as a key player in the occurrence and development of CD.Furthermore,investigations have shown whitematter lesions and neurologic deficits in patients with IBD.Based on these findings,brain activity changes in CD patients have been detected by blood oxygenation level dependent functional magnetic resonance imaging(BOLD-f MRI).BOLD-f MRI functions by detecting a local increase in relative blood oxygenation that results from neurotransmitter activity and thus reflects local neuronal firing rates.Therefore,biochemical concentrations of neurotransmitters or metabolites may change in corresponding brain regions of CD patients.To further study this phenomenon,brain changes of CD patients can be detected non-invasively,effectively and accurately by BOLD-f MRI combined with magnetic resonance spectroscopy(MRS).This approach can further shed light on the mechanisms of the occurrence and development of neurological CD.Overall,this paper reviews the current status and prospects on fMRI and MRS for evaluation of patients with CD based on the brain-gut-enteric microbiota axis.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.21790392).
文摘Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–brain coupling,have often used heart rate variability(HRV)metrics derived from electrocardiography(ECG)recordings as empirical measurements of sympathetic and parasympathetic activities.Functional near-infrared spectroscopy(fNIRS)is a functional brain imaging modality that is increasingly used in brain and cognition studies.The fNIRS signals contain frequency bands representing both neural activity oscillations and heartbeat rhythms.Therefore,fNIRS data acquired in neuroimaging studies can potentially provide a single-modality approach to measure task-induced responses in the brain and ANS synchronously,allowing analysis of CNS–ANS interactions.In this proof-of-concept study,fNIRS was used to record hemodynamic changes from the foreheads of 20 university students as they each played a round of multiplayer online battle arena(MOBA)game.From the fNIRS recordings,neural and heartbeat frequency bands were extracted to assess prefrontal activities and shortterm pulse rate variability(PRV),an approximation for short-term HRV,respectively.Under the experimental conditions used,fNIRS-derived PRV metrics showed good correlations with ECG-derived HRV golden standards,in terms of absolute measurements and video game playing(VGP)-related changes.It was also observed that,similar to previous studies on physical activity and exercise,the PRV metrics closely related to parasympathetic activities recovered slower than the PRV indicators of sympathetic activities after VGP.It is concluded that it is feasible to use fNIRS to monitor concurrent brain and ANS activations during online VGP,facilitating the understanding of VGP-related heart–brain coupling.
基金supported by NSF Award IIS-0713506,and NIH Grant DA021817。
文摘We have applied functional near-infrared spectroscopy(fNIRS)to the human forehead to distinguish different levels of mental workload on the basis of hemodynamic changes occurring in the prefrontal cortex.We report data on 3 subjects from a protocol involving 3 mental workload levels based on to working memory tasks.To quantify the potential of fNIRS for mental workload discrimination,we have applied a 3-nearest neighbor classification algorithm based on the amplitude of oxyhemoglobin(HbO2)and deoxyhemoglobin(HbR)concentration changes associated with the working memory tasks.We have found classification success rates in the range of 44%-72%,which are significantly higher than the corresponding chance level(for random data)of 19.1%.This work shows the potential of fNIRS for mental workload classification,especially when more parameters(rather than just the amplitude of concentration changes used here)and more sophisticated classification algorithms(rather than the simple 3-nearest neighbor algorithm used here)are considered and optimized for this application.
基金supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA020905)the National Natural Science Foundation of China(No.81171143)+1 种基金the Project of International Cooperation and Exchanges of the National Natural Science Foundation of China(No.81161160570)the Zhou Dafu Medical Research Fund(No.202836019-03)
文摘It remains unclear whether language tasks in one's first (L1) or second (L2) language can cause stress responses and whether frontal, autonomic and behavioral responses to stressful tasks are correlated. In this study, we studied 22 Chinese subjects whose L2 was English and measured the cerebral blood oxygenation in their frontal lobe by using functional near-infrared spectroscopy (fNIRS) as par- ticipants engaged in a mental arithmetic task (MAT) and verbal fluency tasks (VFTs) in L1 (Chinese) and L2 (English). To examine the activated cortical areas, we estimated the channel location based on Montreal Neurological Institute (MNI) standard brain space by using a-probabilistic estimation method. We evaluated heart rate (HR) changes to analyze autonomic nervous system (ANS) functioning. We found that the MAT and VFTs induced greater increases in HR than did the control (Ctrl) task. Further- more, subjects developed greater increases in HR in the MAT and VFTt~ than they did in the VFTL1. Compared with the Ctrl task, the MAT and both VFTLland VFTL2 produced robust and widespread bi- lateral activation of the frontal cortex. Interestingly, partial correlation analysis indicated that the activity in the left inferior frontal gyrus (LIFG) [Brodmarm's area (BA) 47] was consistently correlated with the increases in HR across the three tasks (MAT, VFTL2, and VFTL1), after controlling for the performance data. The present results suggested that a VFT in L2 may be more stressful than in L1. The LIFG may affect the activation of the sympathetic system induced by stressful tasks, includin~ MATs and VFTs.
基金the National Nature Science Foundation of China(Grant no.30070261,60025514)and 111 project.
文摘Working memory is one of the most important functions in our brain,which has been widely studied with unreal-life measured technologies.A functional near-infrared spectroscopy(fNIRS)instrument with a portable and low-cost design is developed,which is capable of providing hemodynamic measurement associated with brain function in real-life situations.Using this instrument,we performed working memory studies involved in Chinese words encoding,verbal,and spatial stem recognition,which are mainly studied with other technologies.Our results show that fNIRS can well assess working memory activities,in comparison with the reported results mainly using other methodologies.Furthermore,we find that hemodynamic change in the prefrontal cortex during all working memory tasks is highly associated with subjects’behavioral data.fNIRS is shown to be a promising alternative to the current methodologies for studying or assessing functional brain activities in natural condition.
基金The authors thank Qingming Luo's group for providing VCH dataset.This research was supported by the Fundamental Research Funds for the Central Universities (grant No.ZYGX2012J114)the National Natural Science Foundation of China (grant No.61308114)the Specialized Research Fund for the Doctoral Program of Higher Education (grant No.20130185120024).
文摘Modeling Light propagation within human head to deduce spatial sensitivity distribution(SSD)is important for Near-infrared spectroscopy(NIRS)/imaging(NIRI)and diffuse correlation tomography.Lots of head models have been used on this issue,including layered head model,artificial simplified head model,MRI slices described head model,and visible human head model.Hereinto,visible Chinese human(VCH)head model is considered to be a most faithful presentation of anatomical structure,and has been highlighted to be employed in modeling light propagation.However,it is not practical for all researchers to use VCH head models and actually increasing number of people are using magnet resonance imaging(MRI)head models.Here,all the above head models were simulated and compared,and we focused on the effect of using di®erent head models on predictions of SSD.Our results were in line with the previous reports on the effect of cerebral cortex folding geometry.Moreover,the in fluence on SSD increases with thefidelity of head models.And surprisingly,the SSD percentages in scalp and gray matter(region of interest)in MRI head model were found to be 80%and 125%higher than in VCH head model.MRI head models induced nonignorable discrepancy in SSD estimation when compared with VCH head model.This study,as we believe,is the first to focus on comparison among full serials of head model on estimating SSD,and provided quantitative evidence for MRI head model users to calibrate their SSD estimation.
基金University of Macao,Nos.MYRG2019-00082-FHS and MYRG2018-00081-FHSMacao Science and Technology Development Fund,No.FDCT 025/2015/A1 and FDCT 0011/2018/A1.
文摘Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cognition,the neural mechanisms underlying low-frequency hemodynamic oscillations(LFHO)<1 Hz have not yet been fully explored.One way to examine oscillatory neural dynamics is to use a facial expression(FE)paradigm to induce steady-state visual evoked potentials(SSVEPs),which has been used in electroencephalography studies of high-frequency brain oscillation activity.In this study,LFHO during SSVEP-inducing periodic flickering stimuli presentation were inspected using functional near-infrared spectroscopy(fNIRS),in which hemodynamic responses in the prefrontal cortex were recorded while participants were passively viewing dynamic FEs flickering at 0.2 Hz.The fast Fourier analysis results demonstrated that the power exhibited monochronic peaks at 0.2 Hz across all channels,indicating that the periodic events successfully elicited LFHO in the prefrontal cortex.More importantly,measurement of LFHO can effectively distinguish the brain activation difference between different cognitive conditions,with happy FE presentation showing greater LFHO power than neutral FE presentation.These results demonstrate that stimuli flashing at a given frequency can induce LFHO in the prefrontal cortex,which provides new insights into the cognitive mechanisms involved in slow oscillation.
文摘The purpose of this study was to investigate neuronal mechanisms active during the percep-tion of forward postural limits in a standing po-sition and to specify fall-related brain activity using optical functional near-infrared spectros-copy. The study group included six right-handed, healthy female volunteers (range: 19, 20 years). The optical imaging device comprised 16 opto-des designed to provide 24-channel recording of changes in hemoglobin oxygenation. We meas-ured the changes of oxygenated hemoglobin levels in the frontal region when subjects per-ceived reachability in a standing position. Com- pared with those in other regions, the oxygen-ated hemoglobin levels in the right frontal region compatible with the right prefrontal cortex sig-nificantly increased. This result suggests that brain activities in the right prefrontal cortex are related to perception of reachability. Overesti-mation of postural limits has been reported as one of the risk factor for falling. This overesti-mation might be induced by dysfunction in the prefrontal cortex, resulting in a failure to inhibit a motor program that would have caused a loss of balance in reaching. Activation of the right prefrontal cortex may be a key factor for pre-venting accidental falls in the elderly and in pa-tients with neurological disorders.
基金The MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006)Brain Research Center(BRC)(2012K001127),The MKE(10033634-2012-21)National Research Foundation of Korea(NRF)(2012-0005787)
文摘We characterize the hemodynamic response changes near-infrared spectroscopy (NIRS) during the presentation of in the main olfactory bulb (MOB) of anesthetized rats with three different odorants: (i) plain air as a reference (Blank), (ii) 2-heptanone (HEP), and (iii) isopropylbenzene (Ib). Odorants generate different changes in the concentrations of oxy- hemoglobin. Our results suggest that NIRS technology might be useful in discriminating various odorants in a non-invasive manner using animals with a superb olfactory system.
文摘A novel approach to image hemoglobin concentration(△Dhb) and oxygen saturation (△Doxy) of breast tissue is presented. The scenograph of dual-wavelength (760 and 850 nm) near infrared lights through breast tissue is acquired by high sensitive charge coupled device (CCD) camera. The evaluation criterion of the difference of △Dhh and △Doxy between detected and referenced breast tissue can be obtained by a calculation formula without complicate caculation. This approach is applied to clinic detection in breast tissue. The ongoing clinical experiments indicate that malignant tumor usually exhibits characterize of "higher △Dhb and lower △Doxy", while benign lesion often shows "lower △Dhb and higher △Doxy" or other characters. So it is useful to assist the diagnosis of breast disease.
基金supported by the National Natural Science Foundation of China (Nos. 60778024 and 30825027)the National Basic Re-search Program (973) of China (No. 2006BAD11A12)
文摘Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice.
基金supported by the National Institutes of Health,Grant CA95885.
文摘We have examined ten human subjects with a previously developed instrument for near-infrared diffuse spectral imaging of the female breast.The instrument is based on a tandem,planar scan of two collinear optical fibers(one for illumination and one for collection)to image a gently compressed breast in a transmission geometry.The optical data collection features a spatial sampling of 25 points/cm2 over the whole breast,and a spectral sampling of 2 points/nm in the 650-900nm wavelength range.Of the ten human subjects examined,eight are healthy subjects and two are cancer patients with unilateral invasive ductal carcinoma and ductal carcinoma in situ,respectively.For each subject,we generate second-derivative images that identify a network of highly absorbing structures in the breast that we assign to blood vessels.A previously developed paired-wavelength spectral method assigns oxygenation values to the absorbing structures displayed in the second-derivative images.The resulting oxygenation images feature average values over the whole breast that are significantly lower in cancerous breasts(69±14%,n=2)than in healthy breasts(85±7%,n=18)(p<0.01).Furthermore,in the two patients with breast cancer,the average oxygenation values in the cancerous regions are also significantly lower than in the remainder of the breast(invasive ductal carcinoma:49±11%vs 61±16%,p<0.01;ductal carcinoma in situ:58±8%vs 77±11%,p<0.001).
基金Supported by grants from BUPA, the Royal College of Physicians of London and Paddington Charitable Trust, St Mary's,London. The European Association for the Study of the Liver, the British Medical Research Council (G9900178)Philips Medical Systems (Cleveland, Ohio, USA) and the United Kingdom Department of Health provided support for some of the studies outlined
文摘Hepatic encephalopathy (HE) is a common neuropsychiatric abnormality, which complicates the course of patients with liver disease and results from hepatocellular failure and/or portosystemic shunting. The manifestations of HE are widely variable and involve a spectrum from mild subclinical disturbance to deep coma. Research interest has focused on the role of circulating gut-derived toxins, particularly ammonia, the development of brain swelling and changes in cerebral neurotransmitter systems that lead to global CNS depression and disordered function. Until recently the direct investigation of cerebral function has been difficult in man. However, new magnetic resonance imaging (MRI) techniques provide a non-invasive means of assessment of changes in brain volume (coregistered MRI) and impaired brain function (fMRI), while proton magnetic resonance spectroscopy (^1H MRS) detects changes in brain biochemistry, including direct measurement of cerebral osmolytes, such as myoinositol, glutamate and glutamine which govern processes intrinsic to cellular homeostasis, including the accumulation of intracellular water. The concentrations of these intracellular osmolytes alter with hyperammonaemia. MRS-detected metabolite abnormalities correlate with the severity of neuropsychiatric impairment and since MR spectra return towards normal after treatment, the technique may be of use in objective patient monitoring and in assessing the effectiveness of various treatment regimens.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
基金This work was supported by the National Key Research and Development Program of China(2020YFC2004300,2020YFC2004302,2020YFC2004303,2020YFC2004301 and 2020YFC2004304)the National Natural Science Foundation of China(32000980)+4 种基金the Guangdong Basic and Applied Basic Research Foundation(2019A1515110427 and 2020B1515120014)the Guangdong Basic and Applied Basic Research Foundation Outstanding Youth Prqiect(2021B1515020064)the Key Laboratory Program of Guangdong Higher Education Institutes(2020KSYS001)the Science and Technology Program of Guangzhou(202103000032)the Key P1atform and Scientific Research Project of Guangdong Provincial Education Department(2018KTSCX246).
文摘Stroke is caused by an acute focal disruption of the vasculature in the central nervous system.Neurological-related functional deficits are the most devastating consequences for stroke survi-vors.Neural signals from stroke patients can reflect the functional statuses of patients and provide insights into the neuronal recovery mechanism for functioning,which could be used as the basis for designing optimal treatment strategies.Near-infrared spectroscopy(NIRS)is a low-cost,noninvasive,easily operated neuroimage method and it is compatible with various rehabilitative programs.These advantages make NIRS an excellent candidate in research for stroke recovery.Here,we focused on the brain functions and recovery for stroke patients at stable status,conducted a systematic literature review about NIRS applications in stroke since 2000 and identified a total of 72 references through ScienceDirect and PubMed database retrieval.The NIRS studies in stroke include resting-state function and its recovery,motor function and itsrecovery,motor and cognition interference,cognitive function and its recovery,language function and its recovery,emotional function and its recovery and other applications.Based on the results of the quality assessment,we identified some study gaps from the previous research and provided suggestions for some methodological improvement in the future.The trend of NIRS gives a boost to its application in stroke,and the potential research directions for NIRS in stroke are pros-pected,including multi-center clinical research,treatment efficacy prediction research and brain-muscle coupling research.Finally,limitations of NIRS are discussed.
基金Supported by the Special Fund for the Industrial Technology System Construction of Modern Agriculture in Wheat(CARS-E-2-36)the Special Fund for Henan Industrial Technology System Construction of Modern Agriculture in Wheat(S2010-10-02)National Support Program for Science and Technology(2011BAD35B03)~~
文摘[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drought resistance were selected and were classified according to their drought resistance grades determined by the Technical Specification of Identification and Evaluation for Drought Resistance in Wheat (GB/T 21127-2007). In addition, the harvested wheat seed samples were spectrally analyzed with FOSS NIRSystems5000 near-infrared spectrum analyzer for grain quality (full spectrum analyzer) and then the forecasted regression equations were established. [Result] After the establishment of a database and validation, dis- criminated functions were obtained. The determination coefficient (RSQ) and coeffi- cients of determination for cross validation (1-VR) in the discriminant function built with seed samples from water stress area were 0.846 0 and 0.781 8, respectively, which indicated that the consistency between drought resistance and spectral charac- teristics in wheat varieties was good, and there was high correlation between the near-infrared diffuse reflectance spectra of seeds and the drought resistance in wheat. [Conclusiou] Under water stress condition, it is feasible to establish a conve- nient, rapid and no-damage identification system for the drought resistance in wheat by using the near-infrared diffuse reflectance spectrum technique to scan wheat seeds.
基金Supported by Universitat Rovira I Virgili and the Hospital de Sant Joan de ReusSome aspects have been funded by grantsfrom the Carlos III Health Institute,Madrid,Spain and the European Fund for Regional Development,No.PI08/1381 and No.PI11/00130
文摘AIM: To explore the usefulness of magnetic resonance imaging(MRI) and spectroscopy(MRS) for assessment of non-alcoholic fat liver disease(NAFLD) as compared with liver histological and metabolomics findings. METHODS: Patients undergoing bariatric surgery following procedures involved in laparoscopic sleeve gastrectomy were recruited as a model of obesityinduced NAFLD in an observational, prospective, singlesite, cross-sectional study with a pre-set duration of 1 year. Relevant data were obtained prospectively and surrogates for inflammation, oxidative stress and lipid and glucose metabolism were obtained through standard laboratory measurements. To provide reliable data from MRI and MRS, novel procedures were designed to limit sampling variability and other sources of error using a 1.5T Signa HDx scanner and protocols acquired from the 3D or 2D Fat SAT FIESTA prescription manager. We used our previously described 1H NMRbased metabolomics assays. Data were obtained immediately before surgery and after a 12-mo period including histology of the liver and measurement of metabolites. Values from 1H NMR spectra obtained after surgery were omitted due to technical limitations.RESULTS: MRI data showed excellent correlation with the concentration of liver triglycerides, other hepatic lipid components and the histological assessment, w h i c h e xc l u d e d t h e p r e s e n c e o f n o n-a l c o h o l i c steatohepatitis(NASH). MRI was sufficient to follow up NAFLD in obese patients undergoing bariatric surgery and data suggest usefulness in other clinical situations. The information provided by MRS replicated that obtained by MRI using the-CH3 peak(0.9 ppm), the-CH2- peak(1.3 ppm, mostly triglyceride) and the-CH=CH- peak(2.2 ppm). No patient depicted NASH. After surgery all patients significantly decreased their body weight and steatosis was virtually absent even in patients with previous severe disease. Improvement was also observed in the serum concentrations of selected variables. The most relevant findings using metabolomics indicate increased levels of triglyceride and monounsaturated fatty acids in severe steatosis but those results were accompanied by a significant depletion of diglycerides, polyunsaturated fatty acids, glucose-6-phosphate and the ATP/AMP ratio. Combined data indicated the coordinated action on mitochondrial fat oxidation and glucose transport activity and may support the consideration of NAFLD as a likely mitochondrial disease. This concept may helpto explain the dissociation between excess lipid storage in adipose tissue and NAFLD and may direct the search for plasma biomarkers and novel therapeutic strategies. A limitation of our study is that data were obtained in a relatively low number of patients.CONCLUSION: MRI is sufficient to stage NAFLD in obese patients and to assess the improvement after bariatric surgery. Other data were superfluous for this purpose.