期刊文献+
共找到897篇文章
< 1 2 45 >
每页显示 20 50 100
FUZZY PRINCIPAL COMPONENT ANALYSIS AND ITS KERNEL-BASED MODEL 被引量:4
1
作者 Wu Xiaohong Zhou Jianjiang 《Journal of Electronics(China)》 2007年第6期772-775,共4页
Principal Component Analysis(PCA)is one of the most important feature extraction methods,and Kernel Principal Component Analysis(KPCA)is a nonlinear extension of PCA based on kernel methods.In real world,each input da... Principal Component Analysis(PCA)is one of the most important feature extraction methods,and Kernel Principal Component Analysis(KPCA)is a nonlinear extension of PCA based on kernel methods.In real world,each input data may not be fully assigned to one class and it may partially belong to other classes.Based on the theory of fuzzy sets,this paper presents Fuzzy Principal Component Analysis(FPCA)and its nonlinear extension model,i.e.,Kernel-based Fuzzy Principal Component Analysis(KFPCA).The experimental results indicate that the proposed algorithms have good performances. 展开更多
关键词 principal component analysis (PCA) Kernel methods Fuzzy PCA fpca Kernel PCA (KPCA)
下载PDF
Application of Particle Swarm Optimization to Fault Condition Recognition Based on Kernel Principal Component Analysis 被引量:1
2
作者 WEI Xiu-ye PAN Hong-xia HUANG Jin-ying WANG Fu-jie 《International Journal of Plant Engineering and Management》 2009年第3期129-135,共7页
Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal ke... Panicle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis ( KPCA ) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Then, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condi- tion recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA. We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure, and is helpful for fault condition recognition of complicated machines. 展开更多
关键词 particle swarm optimization kernel principal component analysis kernel function parameter feature extraction gearbox condition recognition
下载PDF
The Principal Component Transform of Parametrized Functions
3
作者 Ilia Zabrodskii Arcady Ponosov 《Applied Mathematics》 2017年第4期453-475,共23页
Many advanced mathematical models of biochemical, biophysical and other processes in systems biology can be described by parametrized systems of nonlinear differential equations. Due to complexity of the models, a pro... Many advanced mathematical models of biochemical, biophysical and other processes in systems biology can be described by parametrized systems of nonlinear differential equations. Due to complexity of the models, a problem of their simplification has become of great importance. In particular, rather challengeable methods of estimation of parameters in these models may require such simplifications. The paper offers a practical way of constructing approximations of nonlinearly parametrized functions by linearly parametrized ones. As the idea of such approximations goes back to Principal Component Analysis, we call the corresponding transformation Principal Component Transform. We show that this transform possesses the best individual fit property, in the sense that the corresponding approximations preserve most information (in some sense) about the original function. It is also demonstrated how one can estimate the error between the given function and its approximations. In addition, we apply the theory of tensor products of compact operators in Hilbert spaces to justify our method for the case of the products of parametrized functions. Finally, we provide several examples, which are of relevance for systems biology. 展开更多
关键词 principal component analysis DISCRETIZATION of FUNCTIONS METAMODELING LATENT Parameters
下载PDF
Functional Data Analysis of Spectroscopic Data with Application to Classification of Colon Polyps
4
作者 Ying Zhu 《American Journal of Analytical Chemistry》 2017年第4期294-305,共12页
In this study, two functional logistic regression models with functional principal component basis (FPCA) and functional partial least squares basis (FPLS) have been developed to distinguish precancerous adenomatous p... In this study, two functional logistic regression models with functional principal component basis (FPCA) and functional partial least squares basis (FPLS) have been developed to distinguish precancerous adenomatous polyps from hyperplastic polyps for the purpose of classification and interpretation. The classification performances of the two functional models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The results indicated that classification abilities of FPCA and FPLS models outperformed those of the PCDA and PLSDA models by using a small number of functional basis components. With substantial reduction in model complexity and improvement of classification accuracy, it is particularly helpful for interpretation of the complex spectral features related to precancerous colon polyps. 展开更多
关键词 functional principal component analysis functional PARTIAL Least SQUARES functional Logistic Regression principal component DISCRIMINANT analysis PARTIAL Least SQUARES DISCRIMINANT analysis
下载PDF
Functional Analysis of Chemometric Data
5
作者 Ana M. Aguilera Manuel Escabias +1 位作者 Mariano J. Valderrama M. Carmen Aguilera-Morillo 《Open Journal of Statistics》 2013年第5期334-343,共10页
The objective of this paper is to present a review of different calibration and classification methods for functional data in the context of chemometric applications. In chemometric, it is usual to measure certain par... The objective of this paper is to present a review of different calibration and classification methods for functional data in the context of chemometric applications. In chemometric, it is usual to measure certain parameters in terms of a set of spectrometric curves that are observed in a finite set of points (functional data). Although the predictor variable is clearly functional, this problem is usually solved by using multivariate calibration techniques that consider it as a finite set of variables associated with the observed points (wavelengths or times). But these explicative variables are highly correlated and it is therefore more informative to reconstruct first the true functional form of the predictor curves. Although it has been published in several articles related to the implementation of functional data analysis techniques in chemometric, their power to solve real problems is not yet well known. Because of this the extension of multivariate calibration techniques (linear regression, principal component regression and partial least squares) and classification methods (linear discriminant analysis and logistic regression) to the functional domain and some relevant chemometric applications are reviewed in this paper. 展开更多
关键词 functional Data analysis B-SPLINES functional principal component Regression functional Partial Least SQUARES functional LOGIT Models functional Linear DISCRIMINANT analysis Spectroscopy NIR Spectra
下载PDF
FPCA和径向基极限学习机的齿轮箱故障检测方法 被引量:5
6
作者 张文兴 刘文翰 王建国 《机械科学与技术》 CSCD 北大核心 2020年第12期1872-1876,共5页
为了克服在数据处理中出现的信息缺失和冗余以及在故障检测上准确率较低等缺陷,利用函数型主成分所具有的鲁棒性和稳定性强的优点来弥补极限学习机在稳定性方面的不足,结合径向基极限学习机,提出了一种基于FPCA(函数型主成分分析)-RBF(... 为了克服在数据处理中出现的信息缺失和冗余以及在故障检测上准确率较低等缺陷,利用函数型主成分所具有的鲁棒性和稳定性强的优点来弥补极限学习机在稳定性方面的不足,结合径向基极限学习机,提出了一种基于FPCA(函数型主成分分析)-RBF(径向基函数)-ELM(极限学习机)的齿轮箱故障检测方法。首先用基函数对原始数据进行预处理,然后应用FPCA提取特征信息建立RBF-ELM齿轮诊断模型,最后利用行星齿轮箱实验数据验证故障检测性能,并与FPCA、FPCA-SVDD和PCA-RBF-ELM的行星齿轮箱故障检测结果对比。结果表明:FPCA-RBF-ELM检测率最高且检测效率快,可用于行星齿轮箱的故障检测,此方法具有可行性和有效性。 展开更多
关键词 齿轮箱 故障检测 函数型 函数型主成分分析 极限学习机
下载PDF
基于FPCA和ReliefF算法的图像特征降维 被引量:1
7
作者 齐迎春 孙挺 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第5期975-980,共6页
针对传统图像特征降维方法计算量大、无法去除冗余信息、未考虑相关性等缺陷,提出一种结合快速主成分分析(FPCA)和ReliefF算法的图像特征降维方法.该方法先利用FPCA算法对样本数据进行初次降维,去除样本中的冗余信息;再利用ReliefF算法... 针对传统图像特征降维方法计算量大、无法去除冗余信息、未考虑相关性等缺陷,提出一种结合快速主成分分析(FPCA)和ReliefF算法的图像特征降维方法.该方法先利用FPCA算法对样本数据进行初次降维,去除样本中的冗余信息;再利用ReliefF算法计算样本特征的分类权重,根据权重对特征进行组合优化.在算法实现过程中,采用递归排除策略,进一步提升了算法特征寻优能力.仿真实验表明,利用本文算法优选出的图像特征,可较好地提高聚类结果,适合实际工程的应用. 展开更多
关键词 图像特征 降维 快速主成分分析 RELIEFF算法
下载PDF
基于FPCA的部分函数型线性模型的复合分位数回归估计 被引量:2
8
作者 余平 《山西师范大学学报(自然科学版)》 2019年第3期5-12,共8页
本文研究了部分函数型线性回归模型的复合分位数估计问题.采用函数型主成分基函数对斜率函数和函数型预测变量进行展开,在相当宽松的条件下给出斜率函数的最优收敛速度和参数部分的渐近正态性.最后通过理论模拟来评价提出方法的有效性.
关键词 部分函数型线性回归模型 复合分位数回归 函数型主成分分析 渐近正态性
下载PDF
M-FPCA在彩色人脸图像识别中的应用 被引量:2
9
作者 王赟 朱嘉钢 +1 位作者 陆晓 黄可望 《计算机工程》 CAS CSCD 2013年第12期191-195,199,共6页
将因子化主成分分析(FPCA)算法应用于人脸图像特征提取时,需要使用迭代算法,但该算法应用于高分辨率图像时实时性较差,并且可能导致维数灾难。针对上述问题,提出一种模块化FPCA(M-FPCA)的新型特征提取方法。将原始数字图像样本进行模块... 将因子化主成分分析(FPCA)算法应用于人脸图像特征提取时,需要使用迭代算法,但该算法应用于高分辨率图像时实时性较差,并且可能导致维数灾难。针对上述问题,提出一种模块化FPCA(M-FPCA)的新型特征提取方法。将原始数字图像样本进行模块化,对模块化后得到的各个子图像矩阵采用FPCA算法进行特征提取,合并子图像特征矩阵得到原图的特征矩阵。彩色图像由R、G、B 3个分量来表示,根据现有彩色信息融合方法的不足,对其进行改进,并结合M-FPCA算法,提出一种彩色M-FPCA新方法。在CVL和FEI人脸库上进行的实验结果表明,M-FPCA方法能提高FPCA算法的实时性,解决维数灾难问题。彩色M-FPCA方法能有效提取彩色人脸图像的色彩信息,得到较高的人脸识别率。 展开更多
关键词 主成分分析 因子化主成分分析 模块化fpca 彩色M—fpca 特征提取 彩色图像识别
下载PDF
Modeling and prediction of children’s growth data via functional principal component analysis 被引量:8
10
作者 HU Yu HE XuMing +1 位作者 TAO Jian SHI NingZhong 《Science China Mathematics》 SCIE 2009年第6期1342-1350,共9页
We use the functional principal component analysis(FPCA) to model and predict the weight growth in children.In particular,we examine how the approach can help discern growth patterns of underweight children relative t... We use the functional principal component analysis(FPCA) to model and predict the weight growth in children.In particular,we examine how the approach can help discern growth patterns of underweight children relative to their normal counterparts,and whether a commonly used transformation to normality plays any constructive roles in a predictive model based on the FPCA.Our work supplements the conditional growth charts developed by Wei and He(2006) by constructing a predictive growth model based on a small number of principal components scores on individual's past. 展开更多
关键词 EIGENFUNCTION functional principal component analysis LMS method growth curve Primary 62H25 Secondary 62P10
原文传递
Identification of predictive MRI and functional biomarkers in a pediatric piglet traumatic brain injury model 被引量:4
11
作者 Hongzhi Wang Emily W.Baker +3 位作者 Abhyuday Mandal Ramana M.Pidaparti Franklin D.West Holly A.Kinder 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第2期338-344,共7页
Traumatic brain injury(TBI) at a young age can lead to the development of long-term functional impairments. Severity of injury is well demonstrated to have a strong influence on the extent of functional impairments;ho... Traumatic brain injury(TBI) at a young age can lead to the development of long-term functional impairments. Severity of injury is well demonstrated to have a strong influence on the extent of functional impairments;however, identification of specific magnetic resonance imaging(MRI) biomarkers that are most reflective of injury severity and functional prognosis remain elusive. Therefore, the objective of this study was to utilize advanced statistical approaches to identify clinically relevant MRI biomarkers and predict functional outcomes using MRI metrics in a translational large animal piglet TBI model. TBI was induced via controlled cortical impact and multiparametric MRI was performed at 24 hours and 12 weeks post-TBI using T1-weighted, T2-weighted, T2-weighted fluid attenuated inversion recovery, diffusion-weighted imaging, and diffusion tensor imaging. Changes in spatiotemporal gait parameters were also assessed using an automated gait mat at 24 hours and 12 weeks post-TBI. Principal component analysis was performed to determine the MRI metrics and spatiotemporal gait parameters that explain the largest sources of variation within the datasets. We found that linear combinations of lesion size and midline shift acquired using T2-weighted imaging explained most of the variability of the data at both 24 hours and 12 weeks post-TBI. In addition, linear combinations of velocity, cadence, and stride length were found to explain most of the gait data variability at 24 hours and 12 weeks post-TBI. Linear regression analysis was performed to determine if MRI metrics are predictive of changes in gait. We found that both lesion size and midline shift are significantly correlated with decreases in stride and step length. These results from this study provide an important first step at identifying relevant MRI and functional biomarkers that are predictive of functional outcomes in a clinically relevant piglet TBI model. This study was approved by the University of Georgia Institutional Animal Care and Use Committee(AUP: A2015 11-001) on December 22, 2015. 展开更多
关键词 controlled cortical impact gait analysis linear regression magnetic resonance imaging motor function pediatric pig model principal component analysis traumatic brain injury
下载PDF
Derringer desirability and kinetic plot LC-column comparison approach for MS-compatible lipopeptide analysis 被引量:1
12
作者 Matthias D’Hondt Frederick Verbeke +3 位作者 Sofie Stalmans Bert Gevaert Evelien Wynendaele Bart De Spiegeleer 《Journal of Pharmaceutical Analysis》 SCIE CAS 2014年第3期173-182,共10页
Lipopeptides are currently re-emerging as an interesting subgroup in the peptide research field, having historical applications as antibacterial and antifungal agents and new potential applications as antiviral, antit... Lipopeptides are currently re-emerging as an interesting subgroup in the peptide research field, having historical applications as antibacterial and antifungal agents and new potential applications as antiviral, antitumor, immune-modulating and cell-penetrating compounds. However, due to their specific structure, chromatographic analysis often requires special buffer systems or the use of trifluoroacetic acid, limiting mass spectrometry detection. Therefore, we used a traditional aqueous/acetonitrile based gradient system, containing 0.1% (m/v) formic acid, to separate four pharmaceutically relevant lipopeptides (polymyxin B1, caspofungin, daptomycin and gramicidin A1), which were selected based upon hierarchical cluster analysis (HCA) and principal component analysis (PCA).In total, the performance of four different C18 columns, including one UPLC column, were evaluated using two parallel approaches. First, a Derringer desirability function was used, whereby six single and multiple chromatographic response values were rescaled into one overall D-value per column. Using this approach, the YMC Pack Pro C18 column was ranked as the best column for general MS-compatible lipopeptide separation. Secondly, the kinetic plot approach was used to compare the different columns at different flow rate ranges. As the optimal kinetic column performance is obtained at its maximal pressure, the length elongation factor λ(Pmax/Pexp) was used to transform the obtained experimental data (retention times and peak capacities) and construct kinetic performance limit (KPL) curves, allowing a direct visual and unbiased comparison of the selected columns, whereby the YMC Triart C18 UPLC and ACE C18 columns performed as best. Finally, differences in column performance and the (dis)advantages of both approaches are discussed. 展开更多
关键词 LIPOPEPTIDE Hierarchical cluster analysis (HCA) principal component analysis (PCA) LC-MS Kinetic plot Derringer desirability function
下载PDF
Effects of Transgenic Bt+CpTI Cotton Cultivation on Functional Diversity of Microbial Communities in Rhizosphere Soils 被引量:1
13
作者 Hongmei LIU Xin LAI +2 位作者 Xiaolong SONG Haifang ZHANG Dianlin YANG 《Agricultural Biotechnology》 CAS 2013年第3期60-64,70,共6页
[Objective] This study aimed to investigation the effects of tranagenic Bt + CpTI cotton cultivation on functional diversity of microbial communities in rhizospbere soils. E Method] By using the Biolog method, a comp... [Objective] This study aimed to investigation the effects of tranagenic Bt + CpTI cotton cultivation on functional diversity of microbial communities in rhizospbere soils. E Method] By using the Biolog method, a comparative study was conducted on the utilization level of single carbon source by microbes in the rhi- zosphere soils of transgenic Bt + CpTI cotton sGK321 and its parental conventional cotton ' Shiyuan 321' at different growth stages. [ Result ] The results showed that, compared with the parental conventional cotton, the average well-color development (AWCD) value of micmhial communities in rhizospbere soils of transgenie Bt + CpTI cotton were significantly higher (P 〈 O. 05) at seedling stage and budding stage while significantly lower at flower and boll stage and bell opening stage. Shannon-Wiener diversity index (H) and Simpson dominance index (D) of microbial communities in rhlzesphere soils of transgenic cotton and conventional cotton varied with the different growth stages, whereas the Shannon-Wiener evenness index (E) showed no significant difference between transgenie cotton and convention- al cotton at four growth stages. Principal component analysis indicated that the patterns of carbon source utilization by microbial communities in rhizospbere soils were similar among transgenic cotton at seeding stage and flower and boll stage and parental conventional cotton at seeding stage and budding stage, which were also similar between tranagenic cotton at budding stage and parental conventional cotton at flower and boll stage. [ Conclusion] Analysis of different carbon sources indi- cated that the main carbon sources utilized by soil microbes were carbohydrates, amino acids, carboxylie acids and polymers. 展开更多
关键词 Transgenic Bt CpTI cotton Soil microbe functional diversity BIOLOG principal component analysis
下载PDF
Function-on-Partially Linear Functional Additive Models
14
作者 Jinyou Huang Shuang Chen 《Journal of Applied Mathematics and Physics》 2020年第1期1-9,共9页
We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric... We consider a functional partially linear additive model that predicts a functional response by a scalar predictor and functional predictors. The B-spline and eigenbasis least squares estimator for both the parametric and the nonparametric components proposed. In the final of this paper, as a result, we got the variance decomposition of the model and establish the asymptotic convergence rate for estimator. 展开更多
关键词 functional Data analysis functional principal component analysis PARTIAL Linear Regression Models Penalized B-SPLINES Variance Model
下载PDF
青海高原栽培羊肚菌营养和氨基酸特征分析及综合评价 被引量:2
15
作者 陈万超 李文 +5 位作者 陈辉 张津京 唐利华 吴迪 张忠 杨焱 《食用菌学报》 CSCD 北大核心 2024年第2期64-75,共12页
为探究高原地区栽培羊肚菌(Morchella spp.)的营养品质,以海拔3 570 m栽培的3个六妹羊肚菌(M. sextelata)品种(M6、HB-8和HB-5)子实体(高原栽培羊肚菌)为主,对比同地域野生样品及湖北栽培的相同品种样品(平原栽培羊肚菌),分析粗蛋白、... 为探究高原地区栽培羊肚菌(Morchella spp.)的营养品质,以海拔3 570 m栽培的3个六妹羊肚菌(M. sextelata)品种(M6、HB-8和HB-5)子实体(高原栽培羊肚菌)为主,对比同地域野生样品及湖北栽培的相同品种样品(平原栽培羊肚菌),分析粗蛋白、粗脂肪、粗多糖、灰分、粗纤维、矿质元素、维生素和氨基酸等营养成分的差异。结果显示:当品种相同时,与平原栽培羊肚菌相比,高原栽培羊肚菌的粗蛋白、粗脂肪含量显著上升,灰分含量显著下降,粗纤维含量显著降低(除M6外);K和Fe含量均显著降低;维生素B6、维生素B2、维生素B9、维生素D、维生素E含量显著降低,维生素B1含量显著升高;总氨基酸含量、总必需氨基酸含量及总必需氨基酸占总氨基酸含量均显著上升。高原栽培羊肚菌的必需氨基酸指数(IAAI)明显高于平原栽培羊肚菌,更接近于FAO/WHO标准蛋白,且其生物价(BV)更高。关联性分析表明,羊肚菌中维生素B6、维生素B9(叶酸)、维生素D和维生素E含量与总必需氨基酸含量呈极显著负相关,维生素B6与粗多糖含量存在显著正相关。热图-聚类分析结果表明,高原栽培羊肚菌蛋白营养价值突出,而平原栽培羊肚菌矿质元素含量较高。营养品质综合评价结果表明,高原栽培羊肚菌样品评分结果明显均优于相同品种的平原栽培样品。 展开更多
关键词 羊肚菌 高原 营养评价 氨基酸评价 主成分分析 隶属函数
下载PDF
大凉山地区不同马铃薯品种产量和营养品质的综合评价 被引量:1
16
作者 汤云川 张庆沛 +9 位作者 冯焱 淳俊 王暄 陈汉 樊红柱 袁星 李倩 杨洪 邓海艳 陈涛 《中国蔬菜》 北大核心 2024年第6期89-100,共12页
为筛选出适宜四川大凉山地区种植的马铃薯品种,对14个马铃薯品种的12个产量与营养品质指标进行测定,并结合主成分分析、隶属函数法、系统聚类分析对马铃薯产量和品质表现进行综合评价。结果表明,单株结薯数、单薯鲜质量、单株块茎鲜质... 为筛选出适宜四川大凉山地区种植的马铃薯品种,对14个马铃薯品种的12个产量与营养品质指标进行测定,并结合主成分分析、隶属函数法、系统聚类分析对马铃薯产量和品质表现进行综合评价。结果表明,单株结薯数、单薯鲜质量、单株块茎鲜质量、单产、还原糖含量的变异系数均超过30%;单株块茎鲜质量与单薯鲜质量、单产和蛋白质含量呈极显著正相关,干物质含量与淀粉含量、蛋白质含量呈极显著正相关,单薯鲜质量与VC含量、锌含量呈显著负相关,蛋白质含量与钾含量呈极显著负相关;主成分分析结果表明,12个指标可用4个主成分来表示,方差累积贡献率达到86.040%。进一步采用隶属函数法和系统聚类分析将14个品种分为3类,筛选出6个综合表现较优的品种,分别为川凉薯10号、青薯9号、川芋50、川凉芋13、云薯108、川芋22号。 展开更多
关键词 大凉山地区 马铃薯 主成分分析 隶属函数法 聚类分析
下载PDF
Unsupervised Functional Data Clustering Based on Adaptive Weights
17
作者 Yutong Gao Shuang Chen 《Open Journal of Statistics》 2023年第2期212-221,共10页
In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be direc... In recent years, functional data has been widely used in finance, medicine, biology and other fields. The current clustering analysis can solve the problems in finite-dimensional space, but it is difficult to be directly used for the clustering of functional data. In this paper, we propose a new unsupervised clustering algorithm based on adaptive weights. In the absence of initialization parameter, we use entropy-type penalty terms and fuzzy partition matrix to find the optimal number of clusters. At the same time, we introduce a measure based on adaptive weights to reflect the difference in information content between different clustering metrics. Simulation experiments show that the proposed algorithm has higher purity than some algorithms. 展开更多
关键词 functional Data Unsupervised Learning Clustering functional principal component analysis Adaptive Weight
下载PDF
基于FPCA与DEELM的弹药协调机械臂性能故障诊断
18
作者 闫少军 文浩 《弹道学报》 CSCD 北大核心 2022年第1期98-104,共7页
为了实现弹药协调机械臂定位精度超差的性能故障诊断,提出了一种基于函数型主成分分析(FPCA)与差分进化极限学习机(DEELM)结合的故障诊断方法。建立了协调机械臂的动力学解析模型,进行了标准状态下协调过程的仿真分析,同时对协调机械臂... 为了实现弹药协调机械臂定位精度超差的性能故障诊断,提出了一种基于函数型主成分分析(FPCA)与差分进化极限学习机(DEELM)结合的故障诊断方法。建立了协调机械臂的动力学解析模型,进行了标准状态下协调过程的仿真分析,同时对协调机械臂实验台架进行了相同状态的协调过程测试,二者输出的支臂角位移曲线吻合较好;利用协调机械臂的动力学解析模型,分析得到气弹簧初始压力和支臂角位移测量误差2个故障参数的临界取值范围,并据此定义了不同的故障类型,在不同故障类型对应的参数取值范围内通过抽样仿真和模拟故障实验获得支臂角位移样本数据;以函数的视角对支臂角位移数据进行分析,将其表示为平滑的函数曲线,利用FPCA计算得到样本数据的函数型主成分得分作为特征参数;将FPCA提取的特征参数与对应的分类标签作为输入与输出信息训练DEELM,利用训练好的DEELM对仿真样本和实验样本进行诊断测试,诊断正确率为98.10%,表明了该方法能够实现协调机械臂性能故障的有效诊断。 展开更多
关键词 故障特征提取 函数型主成分分析 差分进化极限学习机 弹药协调机械臂
下载PDF
Magnetic-optical dual functional Janus particles for the detection of metal ions assisted by machine learning
19
作者 Jianhang Liu Yingdi Lv +4 位作者 Xinghai Li Shi Feng Wenbo Yang Yumeng Zhou Shengyang Tao 《Smart Molecules》 2023年第2期64-75,共12页
Functional polymer microspheres have broad application prospects in various fields,such as metal ion detection,adsorption,separation,and controlled drug release.However,integrating different functions in a single micr... Functional polymer microspheres have broad application prospects in various fields,such as metal ion detection,adsorption,separation,and controlled drug release.However,integrating different functions in a single microsphere system is a significant challenge in this field.In this work,we prepared multicompartmental emulsion droplets utilizing microfluidic technology.Fe3O4 magnetic nanoparticles were added to one of the compartments of the emulsion droplets as functional particles,and Janus microspheres were obtained after curing.Fluorescent probes enter the two compartments of the Janus microspheres by diffusion.The fluorescence changes of the microspheres were observed in situ and captured through a fluorescence microscope.The images are processed by image recognition software and a Python program.The“fingerprint”of the detected metal ions is obtained by dimensionality reduction of the data through Principal Component Analysis.We employ different algorithms to build Machine Learning models for predicting the metal ion species and concentration.The variation of fluorescence intensity of the three fluorescent probes and the corresponding R,G,and B channel values and time are used as descriptors.The results show that the Random Forest,K-neighborhood(KNN),and Neural Network models demonstrated a better predicted effect with a variance(R2)greater than 0.9 and a smaller root mean square error;among them,the KNN model predicted the most accurate results. 展开更多
关键词 functional microspheres machine learning metal ions detection MICROFLUIDICS principal component analysis
下载PDF
24种石蒜鳞茎中主要功能性成分的分析评价
20
作者 李青竹 许俊旭 +2 位作者 蔡友铭 张永春 杨柳燕 《江西农业学报》 CAS 2024年第8期87-93,共7页
以石蒜属24个种(变种)的鳞茎为材料,对其淀粉、可溶性糖、总多糖、可溶性蛋白、总酚、总黄酮、总生物碱和总皂苷含量等功能成分进行了测定,利用主成分分析法对功能成分指标和材料进行了综合评价。结果表明,24种石蒜鳞茎中淀粉含量为122.... 以石蒜属24个种(变种)的鳞茎为材料,对其淀粉、可溶性糖、总多糖、可溶性蛋白、总酚、总黄酮、总生物碱和总皂苷含量等功能成分进行了测定,利用主成分分析法对功能成分指标和材料进行了综合评价。结果表明,24种石蒜鳞茎中淀粉含量为122.78~169.25 mg/g,可溶性糖含量为103.82~138.06 mg/g,可溶性蛋白含量为18.31~23.61 mg/g,总多糖含量为43.33~75.98 mg/g,总酚含量为0.91~3.79 mg/g,总黄酮含量为0.65~1.78 mg/g,总生物碱含量为3.41~8.69 mg/g,总皂苷含量为0.68~1.22 mg/g,各个指标的变异系数变化范围在8.03%~33.84%之间,不同样品间的可溶性糖含量变异系数小,总酚含量变异系数大。主成分分析结果表明,可以从功能因子、抗氧化因子和营养因子3个方面对石蒜品质性状进行评价。研究初步选出了兼具较高生物碱、抗氧化物质和营养物质含量的红蓝石蒜、长筒石蒜、鹿葱、陕西石蒜、换锦花及秀丽石蒜等6个具有开发功能产品潜力的石蒜种质,为后续开展特定功能物质高含量品种的选育提供了参考。 展开更多
关键词 石蒜 鳞茎 功能成分 主成分分析 综合评价
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部