The article presents the data of the assessment of the physical development and functional state of highly qualifiedgymnasts engaged in rhythmic gymnastics. It was found that high-skilled gymnasts have heterogeneity o...The article presents the data of the assessment of the physical development and functional state of highly qualifiedgymnasts engaged in rhythmic gymnastics. It was found that high-skilled gymnasts have heterogeneity ofsomatotypes determined according to the B. Heath-J. Carter scheme and heterogeneity of types of autonomousnervous regulation of heart rate variability, systolic, diastolic blood pressure and respiration, determined on thespiroarteriorhythmocardiograph device. Highly qualified gymnasts have vago- and normotonic types of regulationof heart rate variability;normal-sympathetic-and hypersympathicotonic types of regulation of the variability ofsystolic blood pressure and diastolic blood pressure, vagotonic type of regulation of the variability of the respiratoryrhythm. Statistically significant differences gymnasts, successful in the medal standings at the internationalcompetitions and gymnasts participating, but not in high prizes in competitions, consist in the ability to resistfatigue while performing strenuous mental work (differences were revealed in 10-letter “Mental performance” at aconstant speed (p > 0.0001), and 3-letter test (p > 0.001)), data stabilometric test “Target” indicator “Time stabilityon the left foot” (R > 0.039) with the advantage of a high performing gymnasts artists. Fleshed out the possibility ofusing the parameters of the morphofunctional state of gymnasts in training for the qualitative evaluation of thephysical development of gymnasts, evaluation set their sports uniforms indicated the possibility of developing thereference parameters of the morphofunctional status of gymnasts and recommendations on the frequency of thesurvey of morphological and functional status of gymnasts involved in rhythmic gymnastics.展开更多
This paper presents an energy management optimization system based on an adaptive functional state model of battery aging for internal combustion engine vehicles(ICEVs).First,the functional characteristics of batterie...This paper presents an energy management optimization system based on an adaptive functional state model of battery aging for internal combustion engine vehicles(ICEVs).First,the functional characteristics of batteries in ICEVs are investigated.Then,an adaptive functional state model is proposed to represent battery aging throughout the entire battery service life.A battery protection scheme is developed,including over-discharge and graded over-current protection to improve battery safety.A model-based energy management strategy is synthesized to comprehensively optimize fuel economy,battery life preservation,and vehicle performance.The performance of the proposed scheme was examined under comprehensive test scenarios based on field and bench tests.The results show that the proposed energy management algorithm can effectively improve fuel economy.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,ne...Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,neuropsychiatric sequelae,and changes in brain function remain unknown.This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19(8 males and 11 females,aged 54.2±8.7 years).Fatigue and myalgia were persistent symptoms at the 1-year follow-up.The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls(7 males and 18 females,aged 50.5±11.6 years),COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation(ALFF)values in the left precentral gyrus,middle frontal gyrus,inferior frontal gyrus of operculum,inferior frontal gyrus of triangle,insula,hippocampus,parahippocampal gyrus,fusiform gyrus,postcentral gyrus,inferior parietal angular gyrus,supramarginal gyrus,angular gyrus,thalamus,middle temporal gyrus,inferior temporal gyrus,caudate,and putamen.ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores,and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization.The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors.This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae.This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University(approval No.2020 S004)on March 19,2020.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
This paper introduces a new concept of "State Representation Methodology (SRM)" which is a kind of bridge condition assessment method for structural health monitoring system (SHM). There are many methods for sys...This paper introduces a new concept of "State Representation Methodology (SRM)" which is a kind of bridge condition assessment method for structural health monitoring system (SHM). There are many methods for system identification from the simplicity comparison of damage index to the complicated statistical pattern recognition algorithms in SHM. In these methods, modal analysis and parameters identification or many defined indices are common-used for extracting the dynamic or static characteristics of a system. However, there is a common problem: due to the complexity of a large size system with high-order nonlinear characteristics and severe environment interference, it is impossible to extract and quantify exactly these modal parameters or system parameters or indices as the feature vectors of a system in damage detection in an easy way. The SRM considered a more general theory for the non-parametric description of system state.展开更多
The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical prop...The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical properties of photon-added spin coherent states such as photon number distribution, second-order correlation function and Wigner function are studied. It is found that the Wigner function shows the negativity in some regions and the second-order correlation function is less than unity. Therefore, the photon-added spin coherent state is a nonclassical state.展开更多
In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated ...In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated assembly of global stiffness matrix and repeated inverse operations of the matrix caused by constant changes of structure topology. A new criterion of degenerate of the structure into mechanism is introduced. The calculation examples are satisfactory.展开更多
Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the react...Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the reactants, intermediates, products and transition states of the triplet ground potential energy surfaces of [Ni, O, C2, H4] were obtained at the B3LYP/6-311++G(d,p) levels in C,H,O atoms and B3LYP/ Lanl2 dz in Ni atom. It was found through our calculations that the decabonylation of acetaldehyde contains four steps including encounter complexation, C-C activation, aldehyde H-shift and nonreactive dissociation. The results revealed that C-C activation induced by Ni L2(L=SO3CH3) led to the decarbonylation of acetaldehyde.展开更多
The single-particle Green's function for a dc-biased superlattices with single impurity potential varying harmonically with time has been obtained in the framework of U(t,t') method and Floquet-Green's function. ...The single-particle Green's function for a dc-biased superlattices with single impurity potential varying harmonically with time has been obtained in the framework of U(t,t') method and Floquet-Green's function. The calculation of the local density of states shows that new states will emerge between the resonant Wannier-Stark states as a result of the intervention of time-dependent impurity potential, and the increase in electric field strength of impurity will result in the growing of the number of new states between the gaps of neighbouring Stark ladders.展开更多
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the C2Hx(x = 4~6) species adsorption on the Fe(110) surface. The adsorption energy and equilibrium geometry o...The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the C2Hx(x = 4~6) species adsorption on the Fe(110) surface. The adsorption energy and equilibrium geometry of the species C2Hx(x = 4~6) on four possible sites(top,hcp,SB and LB) on the Fe(110) surface were predicted and compared. Mulliken charges and density of states analysis of the most stable site have been discussed. It is found that the species of C2H6 and C2H5 are adsorbed strongly on the Fe(110) surface with calculated adsorption energy of -80.24 and -178.89 kJ·mol^-1 at the Fe-LB(long-bridge) ,respectively. However,the C2H4 is adsorbed strongly on the Fe(110) surface with calculated adsorption energies of -114.96 kJ·mol^-1 at the top. The results indicate that the charge transferring process can be completed by chemisorption between Fe(110) surface and the species. Moreover,the chemical bands can be formed by chemisorptions between the Fe(110) surface and the species,too.展开更多
A healthy psychological state is the premise for children to carry out various activities.Previous surveys have shown that children with special needs are affected by their own obstacles and are more prone to psycholo...A healthy psychological state is the premise for children to carry out various activities.Previous surveys have shown that children with special needs are affected by their own obstacles and are more prone to psychological problems such as sensitivity,low self-esteem,and impulsiveness.Therefore,it is necessary to provide more sys-tematic mental health education support for special children.Mental health education programs are an efficient form of maintaining children’s mental health.However,in thefield of special education,the number of mental health education courses developed according to the physical and mental characteristics and developmental needs of special children is relatively small,and there are many difficulties in the implementation process.Autism dis-order(ASD)is a kind of pervasive developmental dysfunction that is relatively common and representative in clinical practice.In recent years,the number of autistic children has continued to surge,and has gradually expanded from a family problem to a serious social problem.At present,the evaluation of the effect of autism intervention mainly relies on various behavioral scales,which are subjective to a certain extent.At the same time,due to the unclear pathogenesis of autism,the treatment of autism cannot be predicated on the right medicine,and can only be intervened in various ways.The purpose of this paper is to explore the difference between the EEG signals of autistic children and typically developing control(TD)children through the analysis method of EEG signals,and based on the analysis of EEG signals from an objective point of view,to study whether the music therapy method of Chinese Zither playing training can effectively Improving the brain functional status of chil-dren with autism yields positive therapeutic outcomes.The experimental results show that the complexity of brain electrical signals of ASD children is much lower than that of TD children,and there is a significant difference in the brain functional state between the two.The music therapy method based on Chinese zither playing training can improve the brain function of autistic patients,and there is a positive therapeutic effect.And with the exten-sion of the training period,the effect may be more significant.Chinese zither playing training can provide a new direction for the intervention of autism.展开更多
In this article,mathematical modeling for the evaluation of reliability is studied using two methods.One of the methods,is developed based on possibility theory.The performance of the reliability of the system is of p...In this article,mathematical modeling for the evaluation of reliability is studied using two methods.One of the methods,is developed based on possibility theory.The performance of the reliability of the system is of prime concern.In view of this,the outcomes for the failure are required to evaluate with utmost care.In possibility theory,the reliability information data determined from decision-making experts are subjective.The samemethod is also related to the survival possibilities as against the survival probabilities.The other method is the one that is developed using the concept of approximation of closed interval including the piecewise quadratic fuzzy numbers.In this method,a decision-making expert is not sure of his/her estimates of the reliability parameters.Numerical experiments are performed to illustrate the efficiency of the suggested methods in this research.In the end,the paper is concluded with some future research directions to be explored for the proposed approach.展开更多
The gas phase reaction mechanism of Cl2 + I2 = 2ICl has been theoretically investigated by DFF method at the B3LYP/3-21 G* level. Transition states of three reaction channels were consequently given. The results ind...The gas phase reaction mechanism of Cl2 + I2 = 2ICl has been theoretically investigated by DFF method at the B3LYP/3-21 G* level. Transition states of three reaction channels were consequently given. The results indicate that in the title reaction the least activation energy of bi-molecular reaction was smaller than the dissociation energies of I2 and Cl2, and thus the reaction mechanism was the course of molecule-molecule interaction at low reaction rate. If other factors such as illumination were taken into account, I2 could dissociate into I atoms and then react with Cl2, or Cl2 dissociates into CI atoms and reacts with I2. These were photochemical reactions with high reaction speed. The theoretical results were further validated with absorbance measurement at 516 nm.展开更多
The concept of Initial Casualty Matrix is introduced. Using some probability distribution functions, the initial casualty matrix of masonry is determined. The dynamic method of seismic casualty assessment is establish...The concept of Initial Casualty Matrix is introduced. Using some probability distribution functions, the initial casualty matrix of masonry is determined. The dynamic method of seismic casualty assessment is established and then applied to the Tangshan earthquake data, with some conclusions drawn.展开更多
The structural and elastic properties of the recently-discovered wⅡ- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials.The elastic constants show that wⅡ-...The structural and elastic properties of the recently-discovered wⅡ- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials.The elastic constants show that wⅡ- and δ-Si3N4 are mechanically stable in the pressure ranges of 0-50 GPa and 40-50 GPa,respectively.The α→wⅡ phase transition can be observed at 18.6 GPa and 300 K.The β→δ phase transformation occurs at pressures of 29.6,32.1,35.9,39.6,41.8,and 44.1 GPa when the temperatures are100,200,300,400,500,and 600 K,respectively.The results show that the interactions among the N-2s,Si-3s,3p bands(lower valence band) and the Si-3p,N-2p bands(upper valence band) play an important role in the stabilities of the wⅡ and S phases.Moreover,several thermodynamic parameters(thermal expansion,free energy,bulk modulus and heat capacity) of δ-Si3N4 are also obtained.Some interesting features are found in these properties.δ-Si3N4 is predicted to be a negative thermal expansion material.The adiabatic bulk modulus decreases with applied pressure,but a majority of materials show the opposite trend.Further experimental investigations with higher precisions may be required to determine the fundamental properties of wⅡ- andδ-Si3N4.展开更多
Based on the improved first order second moment method of the structural reliability, an explicit iteration algorithm is proposed, which can avoid solving structural performance function to obtain reliability index β...Based on the improved first order second moment method of the structural reliability, an explicit iteration algorithm is proposed, which can avoid solving structural performance function to obtain reliability index β and have simple calculation forms. Finally, the validity of the explicit iteration algorithm is illustrated through two examples by MATLAB programming.展开更多
The probabilistic analysis takes into consideration an effect of scatter in elastic and strength properties of composite beam, and velocity of impactor. The damage model is implemented in the FE (finite element) cod...The probabilistic analysis takes into consideration an effect of scatter in elastic and strength properties of composite beam, and velocity of impactor. The damage model is implemented in the FE (finite element) code by a VUMAT (user-defined subroutine). The inter ply failure is modeled using cohesive surfaces between the plies. Dynamic response is obtained using explicit time domain integration approach. SFEA (stochastic finite element analysis) is used to study the initiation of fiber failure analysis due to ballistic impact. SFEA provided the critical stress input in the limit state which is computationally solved using reliability software. The random variation in these properties is used for determining statistics of stress in the lamina. These are compared to the random strengths in the limit state function and probability failure surface is obtained by using GPRSM (Gaussian process response surface method). GPRSM is used to predict the Pf (probability of failure) for different ply lay-ups arrangement. The Pf of Chang-Chang initiation of fiber failure for simply supported composite beams with symmetric cross ply lay-ups are (88.9%, 1.47% and 58.1%) greater than the anti-symmetric cross ply, symmetric angle ply and anti-symmetric angle ply, respectively. Sensitivity analysis is also carried out for symmetric cross ply arrangements.展开更多
A new form of damage theory of materials is proposed,that is valid for the case of nonconservative stresses.The partial entropy,strain and microstructure parameters are taken as the state variables.Without assuming th...A new form of damage theory of materials is proposed,that is valid for the case of nonconservative stresses.The partial entropy,strain and microstructure parameters are taken as the state variables.Without assuming the free energy to be a state function,the basic governing equations are derived.According to the balance of released and dissipated energy,the general form of damage evolution equation is obtained.Further,assuming the existence of independent damage mechanisms, the normality of damage evolution equation is proven.The generalized damage variables are dis- cussed.Finally,some examples are given to show the applications of the theory.展开更多
In a structural system reliability analysis that lacks probabilistic information, calculating the numerical characteristics of the state functions, especially the first four moments of the state functions, is necessar...In a structural system reliability analysis that lacks probabilistic information, calculating the numerical characteristics of the state functions, especially the first four moments of the state functions, is necessary. Based on that, the structural system reliability is analyzed with a fourth-order moment method. The reliability sensitivity is required to conduct the differential operation of the numerical characteristic functions. A reliability sensitivity analysis formula is then derived in combination with the relation of the differential operation. Based on the matrix theory and Kronecker algebra, this paper systematically derives a matrix expression of the first four moments of the state functions, and establishes the matrix relation between the first four moments of the state functions and those of the basic random variables. On this basis, a differential operation formula of the first four moments of the state functions is further derived against the first four moments of the basic random variables. The vector relation between the state functions and the multidimensional basic random variables is described by means of the matrix operation to extend the operation method. Finally, a concise and intuitive formula is obtained to explore the inherent essential relation between the numerical characteristics of the state functions and those of the basic random variables, leading to a universal equation for the two kinds of numerical characteristics.展开更多
文摘The article presents the data of the assessment of the physical development and functional state of highly qualifiedgymnasts engaged in rhythmic gymnastics. It was found that high-skilled gymnasts have heterogeneity ofsomatotypes determined according to the B. Heath-J. Carter scheme and heterogeneity of types of autonomousnervous regulation of heart rate variability, systolic, diastolic blood pressure and respiration, determined on thespiroarteriorhythmocardiograph device. Highly qualified gymnasts have vago- and normotonic types of regulationof heart rate variability;normal-sympathetic-and hypersympathicotonic types of regulation of the variability ofsystolic blood pressure and diastolic blood pressure, vagotonic type of regulation of the variability of the respiratoryrhythm. Statistically significant differences gymnasts, successful in the medal standings at the internationalcompetitions and gymnasts participating, but not in high prizes in competitions, consist in the ability to resistfatigue while performing strenuous mental work (differences were revealed in 10-letter “Mental performance” at aconstant speed (p > 0.0001), and 3-letter test (p > 0.001)), data stabilometric test “Target” indicator “Time stabilityon the left foot” (R > 0.039) with the advantage of a high performing gymnasts artists. Fleshed out the possibility ofusing the parameters of the morphofunctional state of gymnasts in training for the qualitative evaluation of thephysical development of gymnasts, evaluation set their sports uniforms indicated the possibility of developing thereference parameters of the morphofunctional status of gymnasts and recommendations on the frequency of thesurvey of morphological and functional status of gymnasts involved in rhythmic gymnastics.
基金supported by National Natural Science Foundation of China(Grant No.52002209)Beijing Nova Program,and the State Key Laboratory of Automotive Safety and Energy(Grant No.KFY2210).
文摘This paper presents an energy management optimization system based on an adaptive functional state model of battery aging for internal combustion engine vehicles(ICEVs).First,the functional characteristics of batteries in ICEVs are investigated.Then,an adaptive functional state model is proposed to represent battery aging throughout the entire battery service life.A battery protection scheme is developed,including over-discharge and graded over-current protection to improve battery safety.A model-based energy management strategy is synthesized to comprehensively optimize fuel economy,battery life preservation,and vehicle performance.The performance of the proposed scheme was examined under comprehensive test scenarios based on field and bench tests.The results show that the proposed energy management algorithm can effectively improve fuel economy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported by Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of China,No.2020SK3006(to JL)Clinical Research Center for Medical Imaging in Hunan Province of China,No.2020SK4001(to JL)the Innovative Major Emergency Project Funding against the New Coronavirus Pneumonia in Hunan Province of China,No.2020SK3014(to JYL)。
文摘Although some short-term follow-up studies have found that individuals recovering from coronavirus disease 2019(COVID-19)exhibit anxiety,depression,and altered brain microstructure,their long-term physical problems,neuropsychiatric sequelae,and changes in brain function remain unknown.This observational cohort study collected 1-year follow-up data from 22 patients who had been hospitalized with COVID-19(8 males and 11 females,aged 54.2±8.7 years).Fatigue and myalgia were persistent symptoms at the 1-year follow-up.The resting state functional magnetic resonance imaging revealed that compared with 29 healthy controls(7 males and 18 females,aged 50.5±11.6 years),COVID-19 survivors had greatly increased amplitude of low-frequency fluctuation(ALFF)values in the left precentral gyrus,middle frontal gyrus,inferior frontal gyrus of operculum,inferior frontal gyrus of triangle,insula,hippocampus,parahippocampal gyrus,fusiform gyrus,postcentral gyrus,inferior parietal angular gyrus,supramarginal gyrus,angular gyrus,thalamus,middle temporal gyrus,inferior temporal gyrus,caudate,and putamen.ALFF values in the left caudate of the COVID-19 survivors were positively correlated with their Athens Insomnia Scale scores,and those in the left precentral gyrus were positively correlated with neutrophil count during hospitalization.The long-term follow-up results suggest that the ALFF in brain regions related to mood and sleep regulation were altered in COVID-19 survivors.This can help us understand the neurobiological mechanisms of COVID-19-related neuropsychiatric sequelae.This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University(approval No.2020 S004)on March 19,2020.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
文摘This paper introduces a new concept of "State Representation Methodology (SRM)" which is a kind of bridge condition assessment method for structural health monitoring system (SHM). There are many methods for system identification from the simplicity comparison of damage index to the complicated statistical pattern recognition algorithms in SHM. In these methods, modal analysis and parameters identification or many defined indices are common-used for extracting the dynamic or static characteristics of a system. However, there is a common problem: due to the complexity of a large size system with high-order nonlinear characteristics and severe environment interference, it is impossible to extract and quantify exactly these modal parameters or system parameters or indices as the feature vectors of a system in damage detection in an easy way. The SRM considered a more general theory for the non-parametric description of system state.
文摘The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical properties of photon-added spin coherent states such as photon number distribution, second-order correlation function and Wigner function are studied. It is found that the Wigner function shows the negativity in some regions and the second-order correlation function is less than unity. Therefore, the photon-added spin coherent state is a nonclassical state.
文摘In this paper, the theorem of structure continual variation of truss structure in the analysis of structure reliability is derived, and it is used to generate limit state function automatically. We can avoid repeated assembly of global stiffness matrix and repeated inverse operations of the matrix caused by constant changes of structure topology. A new criterion of degenerate of the structure into mechanism is introduced. The calculation examples are satisfactory.
基金Funded by the National Natural Science Foundation of China(No.51174179)
文摘Density functional theory calculations were carried out to explore the potential energy surface(PES) associated with the gas-phase reaction of Ni L2(L=SO3CH3) with acetone. The geometries and energies of the reactants, intermediates, products and transition states of the triplet ground potential energy surfaces of [Ni, O, C2, H4] were obtained at the B3LYP/6-311++G(d,p) levels in C,H,O atoms and B3LYP/ Lanl2 dz in Ni atom. It was found through our calculations that the decabonylation of acetaldehyde contains four steps including encounter complexation, C-C activation, aldehyde H-shift and nonreactive dissociation. The results revealed that C-C activation induced by Ni L2(L=SO3CH3) led to the decarbonylation of acetaldehyde.
基金Project supported by the Natural Science Foundation of Shanxi Province (Grant No 20031006).
文摘The single-particle Green's function for a dc-biased superlattices with single impurity potential varying harmonically with time has been obtained in the framework of U(t,t') method and Floquet-Green's function. The calculation of the local density of states shows that new states will emerge between the resonant Wannier-Stark states as a result of the intervention of time-dependent impurity potential, and the increase in electric field strength of impurity will result in the growing of the number of new states between the gaps of neighbouring Stark ladders.
基金Project supported by the Natural Science Foundation of Education Committee of Chongqing (No. KJ091311)
文摘The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the C2Hx(x = 4~6) species adsorption on the Fe(110) surface. The adsorption energy and equilibrium geometry of the species C2Hx(x = 4~6) on four possible sites(top,hcp,SB and LB) on the Fe(110) surface were predicted and compared. Mulliken charges and density of states analysis of the most stable site have been discussed. It is found that the species of C2H6 and C2H5 are adsorbed strongly on the Fe(110) surface with calculated adsorption energy of -80.24 and -178.89 kJ·mol^-1 at the Fe-LB(long-bridge) ,respectively. However,the C2H4 is adsorbed strongly on the Fe(110) surface with calculated adsorption energies of -114.96 kJ·mol^-1 at the top. The results indicate that the charge transferring process can be completed by chemisorption between Fe(110) surface and the species. Moreover,the chemical bands can be formed by chemisorptions between the Fe(110) surface and the species,too.
文摘A healthy psychological state is the premise for children to carry out various activities.Previous surveys have shown that children with special needs are affected by their own obstacles and are more prone to psychological problems such as sensitivity,low self-esteem,and impulsiveness.Therefore,it is necessary to provide more sys-tematic mental health education support for special children.Mental health education programs are an efficient form of maintaining children’s mental health.However,in thefield of special education,the number of mental health education courses developed according to the physical and mental characteristics and developmental needs of special children is relatively small,and there are many difficulties in the implementation process.Autism dis-order(ASD)is a kind of pervasive developmental dysfunction that is relatively common and representative in clinical practice.In recent years,the number of autistic children has continued to surge,and has gradually expanded from a family problem to a serious social problem.At present,the evaluation of the effect of autism intervention mainly relies on various behavioral scales,which are subjective to a certain extent.At the same time,due to the unclear pathogenesis of autism,the treatment of autism cannot be predicated on the right medicine,and can only be intervened in various ways.The purpose of this paper is to explore the difference between the EEG signals of autistic children and typically developing control(TD)children through the analysis method of EEG signals,and based on the analysis of EEG signals from an objective point of view,to study whether the music therapy method of Chinese Zither playing training can effectively Improving the brain functional status of chil-dren with autism yields positive therapeutic outcomes.The experimental results show that the complexity of brain electrical signals of ASD children is much lower than that of TD children,and there is a significant difference in the brain functional state between the two.The music therapy method based on Chinese zither playing training can improve the brain function of autistic patients,and there is a positive therapeutic effect.And with the exten-sion of the training period,the effect may be more significant.Chinese zither playing training can provide a new direction for the intervention of autism.
文摘In this article,mathematical modeling for the evaluation of reliability is studied using two methods.One of the methods,is developed based on possibility theory.The performance of the reliability of the system is of prime concern.In view of this,the outcomes for the failure are required to evaluate with utmost care.In possibility theory,the reliability information data determined from decision-making experts are subjective.The samemethod is also related to the survival possibilities as against the survival probabilities.The other method is the one that is developed using the concept of approximation of closed interval including the piecewise quadratic fuzzy numbers.In this method,a decision-making expert is not sure of his/her estimates of the reliability parameters.Numerical experiments are performed to illustrate the efficiency of the suggested methods in this research.In the end,the paper is concluded with some future research directions to be explored for the proposed approach.
基金Project supported by the Chinese Postdoctoral Science Foundation (No. 2003033486)
文摘The gas phase reaction mechanism of Cl2 + I2 = 2ICl has been theoretically investigated by DFF method at the B3LYP/3-21 G* level. Transition states of three reaction channels were consequently given. The results indicate that in the title reaction the least activation energy of bi-molecular reaction was smaller than the dissociation energies of I2 and Cl2, and thus the reaction mechanism was the course of molecule-molecule interaction at low reaction rate. If other factors such as illumination were taken into account, I2 could dissociate into I atoms and then react with Cl2, or Cl2 dissociates into CI atoms and reacts with I2. These were photochemical reactions with high reaction speed. The theoretical results were further validated with absorbance measurement at 516 nm.
文摘The concept of Initial Casualty Matrix is introduced. Using some probability distribution functions, the initial casualty matrix of masonry is determined. The dynamic method of seismic casualty assessment is established and then applied to the Tangshan earthquake data, with some conclusions drawn.
基金Funded by National Natural Science Foundation of China(Nos.61475132,61501392,11475143,11304141)the National Training Programs of Innovation and Entrepreneurship for Undergraduates(No.201510477001)
文摘The structural and elastic properties of the recently-discovered wⅡ- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials.The elastic constants show that wⅡ- and δ-Si3N4 are mechanically stable in the pressure ranges of 0-50 GPa and 40-50 GPa,respectively.The α→wⅡ phase transition can be observed at 18.6 GPa and 300 K.The β→δ phase transformation occurs at pressures of 29.6,32.1,35.9,39.6,41.8,and 44.1 GPa when the temperatures are100,200,300,400,500,and 600 K,respectively.The results show that the interactions among the N-2s,Si-3s,3p bands(lower valence band) and the Si-3p,N-2p bands(upper valence band) play an important role in the stabilities of the wⅡ and S phases.Moreover,several thermodynamic parameters(thermal expansion,free energy,bulk modulus and heat capacity) of δ-Si3N4 are also obtained.Some interesting features are found in these properties.δ-Si3N4 is predicted to be a negative thermal expansion material.The adiabatic bulk modulus decreases with applied pressure,but a majority of materials show the opposite trend.Further experimental investigations with higher precisions may be required to determine the fundamental properties of wⅡ- andδ-Si3N4.
文摘Based on the improved first order second moment method of the structural reliability, an explicit iteration algorithm is proposed, which can avoid solving structural performance function to obtain reliability index β and have simple calculation forms. Finally, the validity of the explicit iteration algorithm is illustrated through two examples by MATLAB programming.
文摘The probabilistic analysis takes into consideration an effect of scatter in elastic and strength properties of composite beam, and velocity of impactor. The damage model is implemented in the FE (finite element) code by a VUMAT (user-defined subroutine). The inter ply failure is modeled using cohesive surfaces between the plies. Dynamic response is obtained using explicit time domain integration approach. SFEA (stochastic finite element analysis) is used to study the initiation of fiber failure analysis due to ballistic impact. SFEA provided the critical stress input in the limit state which is computationally solved using reliability software. The random variation in these properties is used for determining statistics of stress in the lamina. These are compared to the random strengths in the limit state function and probability failure surface is obtained by using GPRSM (Gaussian process response surface method). GPRSM is used to predict the Pf (probability of failure) for different ply lay-ups arrangement. The Pf of Chang-Chang initiation of fiber failure for simply supported composite beams with symmetric cross ply lay-ups are (88.9%, 1.47% and 58.1%) greater than the anti-symmetric cross ply, symmetric angle ply and anti-symmetric angle ply, respectively. Sensitivity analysis is also carried out for symmetric cross ply arrangements.
基金Projects Sponsered by the Joint Seismological Science Foundation.
文摘A new form of damage theory of materials is proposed,that is valid for the case of nonconservative stresses.The partial entropy,strain and microstructure parameters are taken as the state variables.Without assuming the free energy to be a state function,the basic governing equations are derived.According to the balance of released and dissipated energy,the general form of damage evolution equation is obtained.Further,assuming the existence of independent damage mechanisms, the normality of damage evolution equation is proven.The generalized damage variables are dis- cussed.Finally,some examples are given to show the applications of the theory.
基金Project supported by the National Natural Science Foundation of China(Nos.51135003 and U1234208)the Major State Basic Research Development Program of China(973 Program)(No.2014CB046303)
文摘In a structural system reliability analysis that lacks probabilistic information, calculating the numerical characteristics of the state functions, especially the first four moments of the state functions, is necessary. Based on that, the structural system reliability is analyzed with a fourth-order moment method. The reliability sensitivity is required to conduct the differential operation of the numerical characteristic functions. A reliability sensitivity analysis formula is then derived in combination with the relation of the differential operation. Based on the matrix theory and Kronecker algebra, this paper systematically derives a matrix expression of the first four moments of the state functions, and establishes the matrix relation between the first four moments of the state functions and those of the basic random variables. On this basis, a differential operation formula of the first four moments of the state functions is further derived against the first four moments of the basic random variables. The vector relation between the state functions and the multidimensional basic random variables is described by means of the matrix operation to extend the operation method. Finally, a concise and intuitive formula is obtained to explore the inherent essential relation between the numerical characteristics of the state functions and those of the basic random variables, leading to a universal equation for the two kinds of numerical characteristics.